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Abstract—Methods for sensor control are crucial for modern
surveillance and sensing systems to enable efficient allocation and
prioritisation of resources. The framework of partially observed
Markov decision processes enables decisions to be made based
on data received by the sensors within an information-theoretic
context. This work addresses the problem of closed-loop sensor
management in a multi-target surveillance context where each
target is assumed to move independently of other targets. Analytic
expressions of the information gain are obtained, for a class of
exact multi-target tracking filters are obtained and based on the
Rényi divergence. The proposed method is sufficiently general to
address a broad range of sensor management problems through
the application-specific reward function defined by the operator.

I. INTRODUCTION

Effective sensor management requires strategies for con-
trolling networks of sensors to aid decision-making based
on the data that can be acquired from them [1]. This is a
very general definition since there are many possible controls
of individual sensors for different purposes. We adopt an
information-theoretic approach based on partially observable
Markov decision processes [2], [3]. This paper considers
the problem of sensor management in the context of multi-
target tracking. This is particularly important in surveillance
applications, where the number of targets is unknown and
time-varying, and there is uncertainty about the origin of
measurements produced by the sensor.

Estimating the global population of targets within the same
probabilistic framework enables decisions about sensor control
to be taken in a unified way that accounts for the information
that can be determined from the different target sources [4].
Recent studies in sensor control for multi-object filtering have
demonstrated the effectiveness of this approach using Finite
Set Statistics [5]–[9].

Our solution builds on this approach and considers the
estimation the global population, though focusses on the
information that can be extracted from individual targets. The
approach is based on a model that represents a population
of targets in a holistic and global way [10]. This model
exploits the advantages of representing the global population,
which is important for sensor control, whilst maintaining
individual target identities. This enhanced capability enables
greater flexibility in the choice of reward function, which can
focus on individual targets, classes of targets, or the whole
population.
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II. DESCRIPTION OF THE PROBLEM

A. Surveillance activity

The objective of the surveillance activity is to gather in-
formation about a population X of individuals while they
lie in some defined region of the physical space called the
surveillance scene. The existence of an individual of the
population is assumed certain and not inherent to its presence
in the scene.

The time is indexed according to some integer variable t. At
each instant t ≥ 0, individuals in the scene are represented via
a state x, belonging to some target state space Xt, describing
physical and measurable characteristics of the individual which
are unknown, but of interest to the operator (position, velocity,
etc.). The state space is extended with the empty state ψ to
X̄t = {ψ}∪Xt, in order to allow the description of individuals
currently away from the scene.

The aim of the surveillance problem is then to determine,
at any time t ≥ 0 relevant to the surveillance activity, the
state of each individual in the augmented state space, i.e.
whether the individual is in the scene and, if so, the value
of its characteristics of interest.

B. Sensor system and observation process

While the size of the population X and the state of the
existing individuals are unknown to the operator, the surveil-
lance scene is observed by some sensor system. At each time
t ≥ 0, the sensor may produce at most one observation z, in
the observation space Zt, for each individual in X currently in
the scene. Conversely, it is assumed that any target-generated
observation originates from a single individual. The collected
observations form an observation set Zt = {z1t , . . . , z

n
t }, and it

is implicitly assumed that all the observations produced by the
sensor are distinct. The observation set Zt may also contain
spurious observations, also called false alarms.

C. Input: current information on the target population

Since the population X is only accessible through an im-
perfect observation process, the estimation of the number of
targets and their current state is uncertain and evolves across
time with the availability of new observations. From now
on, t > 0 designs some current time step where a sensor
management decision is scheduled (see Section II-D).

An individual in the population is assumed to enter the
scene (or state space) at some time step t• and possibly
leave it at a later time t◦. The operator identifies a potential
individual of the population X – or target – through a track
composed of a sequence of observations allegedly produced by
the individual in the previous times. We denote Z̄t′ = {φ}∪Zt′



the observation set at time t′ augmented with the empty
observation φ. Assuming that an individual is always detected
at its time of birth t•, a track can be characterised before the
update at time t by the observation path

y = (φ, . . . , φ, zt• , zt•+1, . . . , zt−1) (1)

where zt• ∈ Zt• and zt′ ∈ Z̄t′ for any t• < t′ ≤ t − 1.
We implicitly assume that individuals with state ψ are never
detected by the sensor, i.e., that individuals can only be
detected while they lie in the scene. We denote by Yt−1 the
set of all possible observation paths at time t, before the
availability of the current observation set Zt (see Figure 1).

Fig. 1. En example of a few possible tracks at time t = 6, before the
availability of the observation set Z6. The target characterised by y′ entered
the scene at time 3 and was detected through the observation z′

3
, was miss-

detected at time 4 and produced the observation z′
5

at time 5.

The total information on the population maintained by the
operator, at time t and before the availability of Zt, is described
by a stochastic population Yt [10]. It is decomposed into
two stochastic populations Yd

t , Ya
t describing the previously

detected and the appearing individuals respectively. A stochas-
tic population can be seen as a process that gives to each
possible set of tracks its probability for representing the “true”
population X .

1) Distinguishable individuals: Each previously detected
target is characterised by its observation path and is thus
considered as distinguishable. An hypothesis h is then defined
as a given set of tracks in Yt−1 that (allegedly) proposes an
accurate representation of the population X . The probability
of the hypotheses are described by a distribution ct on the set
of hypotheses Ht, which thus satisfies

∑

h∈Ht

ct(h) = 1. (2)

The distribution ct can be seen as an “extended cardinality
distribution” which characterises not only the number of
targets, but also their identity. To each target, represented by
some track y ∈ Yt−1, is associated a probability measure
pyt ∈ P(X̄)1, which describes the current state of the target.
Thus, each hypothesis h ∈ Ht can be described by the product
measure

P h
t =

⊗

y∈h

pyt . (3)

1P(X) denotes the set of all the probability measures on the measurable
space (X,BX), where BX is the Borel σ-algebra on X.

Combining (2) and (3), the probability associated to the
stochastic population Yd

t is found to be

P d
t =

∑

h∈Ht

ct(h)P
h
t . (4)

2) Indistinguishable individuals: On the other hand, the
appearing individuals have not yet been associated to any ob-
servation, and are indistinguishable in the sense that no specific
information is available on any of them. As a consequence, all
the appearing targets have the same distribution pat ∈ P(X)
and their number is driven by a cardinality distribution cat .
The stochastic population Ya

t is thus characterised by the
probability measure

P a
t =

∑

n≥0

cat (n)P
a,n
t , (5)

where P a,n
t = (pat )

⊗n. The distribution pat and the cardinality
cat are assumed known to the operator as model parameters.
The knowledge of the operator on the current state of the esti-
mated population Yt, prior to the collection of the observation
set Zt from the sensor, is thus described by the probability

Pt = P d
t ⊗ P a

t . (6)

D. Sensor management problem

The sensor system producing the observations is imperfect
and the uncertainties in the sensing capabilities are described
by a stochastic model, assumed known to the operator. We
further assume that several sensor actions u ∈ Ut are available
at the current time step, each one corresponding to a set of
physical parameters (e.g. direction of focus of the sensor,
beam width, pulse, etc.) shaping the sensing capabilities and,
accordingly, the stochastic model of the sensor.

For each sensor action u ∈ Ut, the observation space of the
sensor, assumed finite, is denoted by Zu. The stochastic model
of the sensor under action u – observation noise, probability
of detection and probability of false alarm – is described by
a) a non-negative real-valued function gu(z, ·) ∈ B(X̄t)

2,
interpreted as a likelihood and defined for any z ∈ Z̄u, where
Z̄u = {φ} ∪ Zu is the augmented observation space, and b) a
probability of false alarm pfa,u on Zu. For any observation
z ∈ Zu, it is practical to write gu(z, ·) through a restricted
likelihood ℓu(z, ·) ∈ B(Xt) and a probability of detection pd,u
on X̄t such that:















gu(z, x) = pd,u(x)ℓu(z, x), z ∈ Zu, x ∈ Xt,

gu(φ, x) = 1− pd,u(x), x ∈ Xt,

gu(z, ψ) = 0, z ∈ Zu,

gu(φ, ψ) = 1.

(7)

In the closed-loop sensor management problem [11], one
and only one sensor action u ∈ Ut must be chosen by
the operator in order to drive the observation process that
will produce the next observation set Zt. One must design

2B(X) denotes the Banach space of all the bounded and measurable
functions on X equipped with the uniform norm ‖ · ‖.



a deterministic policy that, based on the current information

on the target population Pt and the expected information P̂u

should the action u ∈ Ut be chosen, produces a reward
assessing the information gain of each possible action u. The
sensor is then controlled according to the action that yields the
highest expected reward (see Figure 2).

Fig. 2. Principle of close-loop sensor management (time t).

III. INFORMATION GAIN

From now on, u designs an arbitrary choice among the pool
of available actions Ut, and the rest of the paper focusses on
the construction of the information gain Gu (see Figure 2). Z
will denote an arbitrary finite subset of Zu, i.e. a possible
observation set collected from the sensor under action u,
and Yu will denote the corresponding updated stochastic
population. The Rényi divergence [12] will be exploited in
order to quantify the information gain on each target state.

We will first establish the general form of the information
gain Gu through Sections III-A, III-B, and III-C. Emphasizing
the information gain in some specific regions of the scene
and/or for some specific targets may be valuable depending of
the context of the surveillance activity, and we will address
this problem in Section III-D.
A. Individual information gain

The updated set of tracks Ŷu describing the updated popu-
lation Yu is composed of the tracks of the form:

• y :z3, where y ∈ Yt−1 and z ∈ Z̄ = {φ} ∪ Z , i.e. the
target characterised by the track y has either generated
the observation z ∈ Z or has been miss-detected (z = φ);

• φt−1 :z
4, where z ∈ Z , i.e. an appearing target has

generated the observation z ∈ Z .

The case φt−1 :z will be denoted a:z to underline the associ-
ated interpretation. We shall now detail the information gain
for these two types of tracks.

1) Updated tracks of the form “y :z”: The probability
distribution py :z

u ∈ P(X̄t) of a new track of the form y :z
is given by the Boltzmann-Gibbs transformation [13]:

py :z
u (dx) = Ψgu(z,·)(p

y
t )(dx) (8a)

=
1

pyt (gu(z, ·))
gu(z, x)p

y
t (dx). (8b)

3“ :” is the concatenation operator, i.e. (e1, . . . , en) :e = (e1, . . . , en, e).
4“φ

t
” is the sequence of t empty observations, i.e. φ

t
= (φ, . . . , φ

︸ ︷︷ ︸

t times

).

We will assume that both pyt and py :z
u admit Radon-Nikodym

derivatives with respect to some reference measure µ on X̄t

and will denote them the same way for the sake of simplicity.
The information gain for an updated track y :z is then defined
as the Rényi divergence [12] from pyt to py :z

u

Gy :z
u =

1

α− 1
log

[

∫

[

pyt (x)
]α[

py :z
u (x)

]1−α
µ(dx)

]

, (9)

where 0 < α < 1 is the order of the divergence5. Note
that Gy :z

u is non-negative, and equals zero if and only if pyt
coincides with py :z

u on the augmented state space X̄t; that
is, if the observation z carried no additional information on
the target regarding: a) its localization in the scene, since
pyt = py :z

u on Xt, and b) its presence in the scene, since
pyt (ψ) = py :z

u (ψ).
2) New tracks of the form “a:z”: Likewise, the probability

distribution pa :zu ∈ P(Xt) of a new track of the form a:z
is given by the Boltzmann-Gibbs transformation (8) of the
probability distribution of the appearing targets pat . Similarly
to Section III-A1, we define the information gain Ga :z

u for a
new track a:z as the Rényi divergence from pat to pa :zu .

B. Population information gain

We can now determine the information gain assuming a
given hypothesis h ∈ Ht and a given number n ∈ N of
appearing targets as a representation of the population X . The

updated set of tracks ĥ is defined as the set of all possible
association schemes a = (h, n,h), where h represents a spe-
cific data association between the tracks in h, the n appearing
targets and the current observation set Z . An association h is
an element of the set

AdmZ(h, n) =
{

(hd, Zd, Za, ν) |hd ⊆ h, Zd ⊆ Zt,

Za ⊆ Zt \ Zd, |Za| = n, ν ∈ S(hd, Zd)
}

, (10)

where hd designs the tracks that are currently detected, Zd

the observations associated to these detected tracks, Za the
observations associated to the n appearing targets, and ν the
bijective function associating detected tracks to observations
in Zd. For some association scheme a = (h, n,h), the

corresponding updated set of tracks ĥ can be characterised
by a probability distribution of the form

P̂a
u = Pa

d,u × Pa
md,u × Pa

fa,u, (11)

where

Pa
d,u =

[

∏

z∈Za

pat (gu(z, ·))
][

∏

y∈hd

pyt (gu(ν(y), ·))
]

,

Pa
md,u =

∏

y∈h\hd

pyt (gu(φ, ·)),

Pa
fa,u =

[

∏

z∈Z

1− pfa,u(z)
]

∏

z∈Z\(Zd∪Za)

pfa,u(z)

1− pfa,u(z)
.

5The order of the divergence may be dependent on the track y, but for the
sake of simplicity we will drop this dependency.



The scalar Pa
d,u (resp. Pa

md,u, Pa
fa,u) represents the probability

of the detected individuals (resp. undetected individuals, false
alarms) when associated to the observations in Z in the way

described by h. The updated tracks in ĥ are of the form

ĥ =
[

⋃

y∈hd

{y :ν(y)}
]

∪
[

⋃

y∈h\hd

{y :φ}
]

∪
[

⋃

z∈Za

{a:z}
]

. (12)

The information gain from the representation (h, n) to the

updated representation ĥ can then be expressed in terms of
the individual gains (9) as

Ga
u =

∑

y∈hd

Gy :ν(y)
u +

∑

y∈h\hd

Gy :φ
u +

∑

z∈Za

Ga :z
u . (13)

Considering the updated hypotheses created from all the pos-
sible data associations (10), we find the information gain for
the pair (h, n), through the observation set Z , to be

Gh,n
u (·|Z) =

∑

h∈AdmZ(h,n)

P̂a
uG

a
u . (14)

Finally, the information gain for the pair (h, n), expected over
all possible observation sets, is found to be

Gh,n
u =

∑

Z⊆Zu

Gh,n
u (·|Z). (15)

Recalling that the pair (h, n) can be seen as a realisation
of the stochastic population Yt, it appears that the expected
information gain for action u is given by the expectation of
the population gain (15) with respect to Yt , i.e.

Gu = EYt

[

GYt
u

]

(16a)

=
∑

h∈Ht

∑

n≥0

ct(h)c
a
t (n)G

h,n
u . (16b)

Substituting (14) and (15) in (16a) yields the alternative form

Gu = EYt

[

∑

Z⊆Zu

[

∑

h∈AdmZ(Yt)

P̂a
uG

a
u

]

]

, (17)

where a consistently refer to (h, n,h) where (h, n) can be
seen as a realisation of Yt.

C. Factorised expression of population gain Gu

We wish to factorise the expression (17) of the information
gain Gu with respect to the individual gains (9) in order to
isolate the contribution of a specific track. In order to do so,
we introduce the reduced population Y

y
t , where y ∈ Ȳt−1, as

the estimated population Yt from which the target represented
by y is excluded. Realisations of Y

y
t are of the form:

• (h \ {y}, n), if y ∈ Yt−1,
• (h, n− 1), if y = φt−1,

where (h, n) is a realisation of Yt. We can then factorise the
population gain (16) as follows:

Proposition 1: The expected information gain Gu for any
action u ∈ Ut is given by the sum

Gu = Gd
u +Ga

u, (18)

where

Gd
u =

∑

z∈Z̄u

∑

y∈Yt−1

pyt (gu(z, ·))Q
y,z
u Gy :z

u , (19)

Ga
u =

∑

z∈Zu

pat (gu(z, ·))Q
φt−1

,z
u Ga :z

u , (20)

with

Qy,z
u = EY

y
t

[

∑

Z⊆Zu

[

∑

h∈AdmZ\{z}(Y
y
t )

P̂a
u

]

]

. (21)

That is, the information gain Gu is a linear combination of

the individual gains for the updated tracks Ŷu, whether they
characterise a previously detected target (19) or an appearing
one (20).

We see in (19) that the contribution of each individual gain
is weighted by a) pyt (gu(z, ·)), i.e. the probability of the sin-
gle-target/single-observation association leading to the updated
track, and b) Qy,z

u , i.e. the probability of the data association
between the remaining population and observations. The same
remark applies to the appearing targets in (20).

D. Region-specific and/or track-specific information gain

The analysis carried in the previous section can be easily
made specific to a given region of the state space and/or to a
given set of targets For each track y ∈ Ȳt−1, we consider a
measurable mapping fy : X̄t → X̄t, to be determined later,
and we consider the probability measures in P(X̄t)

{

fy
∗ (p

y
t ), f

y
∗ (p

y :z
u ), y ∈ Yt−1, z ∈ Z̄u,

f
φt−1

∗ (pat ), f
φt−1

∗ (pa :zu ), z ∈ Zu,
(22)

where f∗(p) denotes the image of the measure p under f (see
Section 3.6. in [14]), or pushforward measure, defined by

(f∗(p))(·) = p(f−1(·)).

A careful choice of the mappings fy then allows an emphasis
of the control on a desired region of the state space and/or
a desired set of targets when the pushforward probabilities
are substituted to the original ones in the construction of the
individual gains (9).

1) Example 1: region-specific information gain: Assume
that B ∈ BX denotes a region of special interest for the current
sensor management decision – e.g. the immediate surroundings
of a strategic building which is the focus of the surveillance
activity. Consider a common mapping f for all the tracks
y ∈ Ȳt−1 and such that:

f(x) =

{

x, if x ∈ B,

ψ, if x /∈ B.
(23)



Now, consider an updated track of the form “y :z” (see
Section III-A1). Then the individual gain (9), when applied
to the pushforward probabilities (22), becomes

Gy :z
u =

1

α− 1
log

[

∫

B

[

pyt (x)
]α[

py :z
u (x)

]1−α
µ(dx)

+
[

pyt (X̄t \B)
]α[

py :z
u (X̄t \B)

]1−α
]

. (24)

We see that the information gain is now focussed on the point-
wise variations from pyt to py :z

u inside the region of interest B
only. Moreover, the gain is zero if and only if the (possibly
empty) observation z carried no additional information on the
target regarding:

• its localization in B, since pyt = py :z
u on B, and

• its presence in B, since pyt (X̄t \B) = py :z
u (X̄t \B).

A similar reasoning applies for new tracks of the form “a:z”
(see Section III-A2).

Fig. 3. Information gain assessed within B only.

2) Example 2: track-specific information gain: Assume that
Y ⊆ Yt−1 denotes a set of tracks of special interest driving
the current sensor decision – e.g. representing targets with a
significant level of threat. Consider the mappings fy such that:

fy(x) =

{

x, if y ∈ Y,

ψ, if y /∈ Y.
(25)

Now, consider an updated track of the form “y :z” (see
Section III-A1). If y ∈ Y then the individual gain (9) remains
unchanged when applied to the pushforward probabilities (22).
On the other hand, if y /∈ Y it becomes

Gy :z
u =

1

α− 1
log

[

[

pyt (X̄t)
]α[

py :z
u (X̄t)

]1−α
]

= 0.

In other words, only the information gain on the targets with
specific interest is involved in the decision policy. A similar
reasoning applies for new tracks of the form “a:z” (see
Section III-A2).

Fig. 4. Information gain assessed for tracks y′, y′′ only.

IV. CONCLUSION

This paper addresses the problem of closed-loop sensor
management for multi-object filtering solutions using stochas-
tic populations of independent targets. The derivation of a
reward function for each possible sensor action is provided in
a principled and general way, and further expressed as a linear
combination of the expected information gains, determined
with the Rényi divergence, for each track composing the
estimated target population. The proposed reward function can
be focussed on specific regions of the scene and/or specific
targets, and this is illustrated on two simple examples. Filtering
approximations will be subsequently explored for an efficient
computation of the weights involved in the linear combination.
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