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Abstract—Following a recent study on the Probability Hy-
pothesis Density filter, this paper aims at extracting higher-order
information statistics on the local target number from the filtered
state of the Cardinalized Probability Hypothesis Density filter,
based on recent developments of novel derivation tools in the
multi-object filtering framework. In addition to the description
of a novel approach for retrieving the expression of the updated
localised mean target number, this paper proposes the extraction
of the novel localised variance in the target number across the
whole state space.

Keywords—Multi-object filtering, Higher-order statistics, CPHD
filter

I. INTRODUCTION

The exploitation of the Random Finite Set (RFS) theory for
multi-target detection and tracking problems was popularized
by Mahler’s Probability Hypothesis Density (PHD) filter [1].
The tracking community has enjoyed ever since a vast and
resourceful framework, rigorously described by the Finite
Set Statistics (FISST), for the design and implementation of
multi-object filters in challenging environments, notably when
the number of targets is unknown and possibly varying.

The PHD filter propagates the probability hypothesis
density (or intensity) of a point process describing the
multi-target configuration in the state space, and thus provides
an estimation of the mean target number in any region of
the state space. Elegant and computationally inexpensive,
it has been enjoying a wide popularity for the design of
tracking applications in various domains. More recently, the
relative instability of the PHD filter in the estimation of the
target number led Mahler to the design of the Cardinalized
Probability Hypothesis Density (CPHD) filter [2]. In addition
to the intensity, it propagates the full cardinality distribution
of the global target number, assuming that the filtered process
can be approximated by an i.i.d. process.

To this day, however, the literature on the exploitation
of higher-order information in the RFS filtering framework
remains scarce. To the best of the authors’ knowledge, the
extraction of local information on the target number of higher
order than the mean remains largely unexplored, even though
it can potentially lead to the design of meaningful statistical
tools, for example as supporting data in sensor management
decision problems.

The aim of this paper is to produce first and second-
order information statistics describing the local target number
anywhere in the state space, using the novel derivations tools
introduced in [3], [4], [5] and previously applied in the context
of PHD filtering in [6], [7]. This paper shall first present a
novel approach for the extraction of the intensity or localised
mean target number, propagated by the usual CPHD filter.
Then, it shall propose the novel extraction of a higher-order
statistical quantity, namely the localised variance in the target
number, which provides a measure of the uncertainty in the
estimated target number propagated by the filter.

Section II presents general concepts on stochastic population
processes that shall be needed for the construction of
information statistics. Section III then describes the
construction of the probability generating functional (PGFl)
of the target process following a CPHD Bayes update step.
Section IV provides a detailed construction of the localised
mean (section IV-B) and variance (section IV-C) in the target
number, drawn from functional derivatives of the PGFl.
Section V summarizes the key contributions of the paper. An
intermediary result is provided in the appendix.

II. STOCHASTIC POPULATION PROCESSES: GENERALITIES

In this paper, the objects of interest are targets with individual
states x belonging to some target space X ⊂ R

dx , typically
including position and velocity variables. The multi-object
filtering framework focuses of the target population rather than
individual targets; because the target number and the target
states are unknown and (possibly) time-varying, the target
population is described by a stochastic population process
or point process φ, a random variable whose realizations are
sets of points ϕ = {x1(ω), . . . , xN(ω)(ω)} depicting specific
multi-target configurations.

More formally, a point process φ on X is a measurable
mapping

φ : (Ω,F ,P) → (X ,BX ) (1)

between a given probability space (Ω,F ,P) and the
measurable space (X ,BX ), where X is the process state
space, i.e. the space of all the sets of distinct points in X,
and BX is the Borel σ-algebra on X . As usual with random
variables, φ shall be more easily described by its probability



distribution on (X ,BX ) generated by P, denoted by P .

In the scope of this paper, delimited by the multi-object
filtering framework and the novel derivation rules described
in [4], [3], the probability measure P allows for the
description of a wide range of point processes and may be
non-symmetrical w.r.t. the targets. It will be shown, however,
that the assumptions behind the CPHD filter discard non-
symmetrical probability measures and are largely responsible
for the tractability of the resulting filtering equations (see
section III).

The PGFl of the target process φ reads as follows [4]:

Gφ[w] = E





∏

x∈φ

w(x)



 =

∫

(

∏

x∈ϕ

w(x)

)

Pφ(dϕ)

=
∑

n>0

∫

(

n
∏

i=1

w(x̄i)

)

Pφ(dx̄1:n). (2)

For simplicity’s sake,
∏n

i=1 w(xi) may also be written as
w(x1:n), although one must keep in mind that w(.) is the
usual test function defined on the target space X.

Assuming that a collection of measurements z1:m is
newly available, the target process φ updates to φ+ following
the general Bayes’ rule (Theorem 6 in [4]):

Gφ+ [w|z1:m] =
E

[(

∏

x∈φ w(x)
)

L(z1:m|φ)
]

E[L(z1:m|φ)]

=

∑

n>0

∫

w(x̄1:n)L(z1:m|x̄1:n)P(dx̄1:n)

∑

n>0

∫

L(z1:m|x̄1:n)P(dx̄1:n)

, (3)

where L(z1:m|x1:n) is the multi-measurement / multi-target
likelihood describing the (current) observation process,
encapsulating the detection, measurement and clutter
processes.

In the general framework described in [4], [3], the likelihood
L may be non-symmetrical w.r.t. the measurements z1:m
and/or the targets x1:n; However, in the case of the CPHD
filter as well as in many other examples of practical multi-
object filters, the order of the incoming measurements
z1:m is arbitrary and conveys no meaning. For this reason,
the likelihood L shall be assumed symmetrical w.r.t. the
measurements. As previously mentionned, the symmetry w.r.t.
to the targets will stem from the specific assumptions of the
CPHD filter in section III.

III. THE CPHD BAYES UPDATE: PROBABILITY

GENERATING FUNCTIONAL

We shall now apply to the general Bayes’ rule (3) the specifics
of the CPHD filter in order to produce the PGFl of the
updated target process φ+, which is a critical component
for the computation of the localised mean and variance (see
section IV). The assumptions of the CPHD update step are the
following [2]:

1) The predicted target process φ is i.i.d.;
2) A detected target produces a single measurement;
3) A measurement stems from at most one target;
4) The clutter process is i.i.d.

From assumption 1 follows the explicit construction of the
probability measure P of the predicted process φ. For any set
of points x1:n ∈ X

n:

P(dx1:n) = ρ(n)
n
∏

i=1

µ1(dxi)
∫

µ1(dx̄)
= ρ(n)

n
∏

i=1

µ̃1(dxi), (4)

where ρ, µ1, µ̃1 are respectively the cardinality probability,
the first moment measure and the normalized first moment
measure of φ1. By definition of an i.i.d. process [8] the average
number of targets in the whole state space, denoted by N ,
follows the relation:

N =
∑

n>1

nρ(n) =

∫

µ1(dx̄). (5)

In addition, the probability generating function (PGF) of the
predicted process will be noted G such that:

∀y ∈ [0 1], G(y) =
∑

n>0

ρ(n)yn. (6)

Note that the density associated to the first moment measure,
denoted by µ1 as well, is the intensity propagated by the
CPHD filter [2].

Assumptions 2 to 4 shape the multi-measurement / multi-target
likelihood L and yield:

L(z1:m|x1:n) =
∑

π∈Πm,n

π∅!ρ
c(π∅)

∏

(i,∅)∈π

c(zi)
∏

(i,j)∈π

P (zi|xj)
∏

(∅,j)∈π

P (∅|xj),

(7)

where:

• ∅ denotes the empty configuration;

• Πm,n is the set of all the partitions of indexes
{i1, ...im, j1, ..., jn} solely composed of tuples of the
form (ia, jb) (target xjb is detected and produces
measurement zia), (∅, jb) (target xjb is not detected).
or (ia, ∅) (measurement zia is clutter);

• π∅ = #{i|(i, ∅) ∈ π} is the number of clutter
measurements given by partition π;

• P is the single-measurement / single-target likelihood;

• ρc is the cardinality distribution of the clutter process;

• c(.) is the individual probability distribution of a
clutter measurement.

1In the scope of this paper, it is implicit that the neighbourhoods dx defined
around any point x ∈ X are chosen as members of the Borel algebra BX.
Thus, P (dx) = Q(dx) is well-defined and equivalent to

∫
f(x)P (dx) =∫

f(x)Q(dx) for any test function f .



In addition, the PGF of the clutter process will be noted C
such that:

∀y ∈ [0 1], C(y) =
∑

n>0

ρc(n)yn. (8)

The assumptions characterizing the CPHD filter have a critical
impact on the simplification of the Bayes update equation
(3), notably because (4) (resp. (7)) imply a symmetrical
probability measure P (resp. likelihood L) w.r.t. the targets.

As an illustration, we shall now detail the expression of
the normalizing term in Bayes’ rule (3) w.r.t. the predicted
state of the CPHD filter, i.e. w.r.t. the PGF G and the first
moment µ1 of the target process φ. Using the specific form
of the predicted probability measure (4) gives:

∑

n>0

∫

L(z1:m|x̄1:n)P(dx̄1:n)

=
∑

n>0

ρ(n)

∫

L(z1:m|x̄1:n)
n
∏

i=1

µ̃1(dx̄i). (9)

Let us first fix an arbitrary target number n ∈ N and consider
the quantity

∫

L(z1:m|x̄1:n)
∏n

i=1 µ̃1(dx̄i). Since the likeli-
hood is symmetrical w.r.t. the targets, the integration variables
x̄1:n play an identical role in (9) and using the specific form
of the likelihood (7) yields:
∫

L(z1:m|x̄1:n)

n
∏

i=1

µ̃1(dx̄i) =

∑

π∈Πm,n

π∅!ρ
c(π∅)

∏

(i,∅)∈π

c(zi)
∏

(i,j)∈π

P+(zi)
∏

(∅,j)∈π

P+(∅),

(10)

where:

• P+(zi) =
∫

P (zi|x̄)µ̃1(dx̄) is the probability that zi
is a true measurement (i.e. non clutter);

• P+(∅) =
∫

P (∅|x̄)µ̃1(dx̄) is the probability that a
missed detection occurs.

In other words, measurement / target pairs (zi, xj1 ) and
(zi, xj2) are equivalent for integration purpose and a partition
π ∈ Πm,n consists of selecting:

• a number d of detections;

• a collection of d true measurements in z1, . . . , zm;

• an arbitrary collection of d detected targets in
x1, . . . , xn.

Therefore, (10) simplifies as follows:
∫

L(z1:m|x̄1:n)

n
∏

i=1

µ̃1(dx̄i)

∝

min(m,n)
∑

d=0

n!(m− d)!

(n− d)!
ρc(m− d)(P+(∅))n−d

∑

I⊆z1:m
|I|=d

∏

z∈I

P+(z)

c(z)

∝

min(m,n)
∑

d=0

n!(m− d)!

(n− d)!
ρc(m− d)(P+(∅))n−ded(z1:m),

(11)

where ed is the elementary symmetric function [8] of order d

ed(Z) =
∑

S⊆Z,|Z|=d





∏

ξ∈S

ξ



 (12)

applied to the set
{

P+(z)
c(z) |z ∈ z1:m

}

and abusively noted

ed(z1:m).

Thus, the denominator (9) becomes:

∑

n>0

∫

L(z1:m|x̄1:n)P(dx̄1:n)

∝
∑

n>0

ρ(n)

min(m,n)
∑

d=0

n!(m− d)!

(n− d)!
ρc(m− d)(P+(∅))n−ded(z1:m)

∝
m
∑

d=0





∑

n>d

ρ(n)
n!(P+(∅))n−d

(n− d)!



 (m− d)!ρc(m− d)ed(z1:m)

∝
m
∑

d=0

G(d)(P+(∅))C(m−d)(0)ed(z1:m), (13)

where the last equation is resolved using the expressions of
the PGFs (6), (8). The multiplying constant in (13), found to
be
∏

z∈z1:m
c(z), will appear as well in the expression of the

numerator of the PGFl (see section IV) and shall be omitted
from now on for simplicity’s sake.

IV. LOCALISED MEAN AND VARIANCE IN TARGET

NUMBER

Making use of the novel derivation tools introduced in [3],
[4], this sections aims at retrieving the mean and variance of
the local target number from the PGFl of the updated target
process φ+. The localised mean target number is provided by
the first moment measure and, as such, the method exposed
in section IV-B produces the same result as Mahler’s original
expression of the updated first moment density in the CPHD
filter [2]. On the other hand, the extraction of the localised
variance exposed in section IV-C is, to the best of the authors’
knowledge, a novel result.

A. Construction of local information statistics

Local information statistics provide a statistical description of
the number of targets - according to the target process φ -
in any region B ∈ BX of the target space. Given the target
process φ, one can define the counting measure

φ(B) =
∑

x∈φ

1B(x) (14)

as an integer-valued random variable which counts2 the
number of targets within such a region B [9].

Just as usual random variables, φ(B) can be described
by its statistical moments. The mean target number µ1(B) is
directly provided by the integral of the first moment measure

21B is the indicator function on B



µ1 of the target process φ over B, while the variance in
target number var(B) is given by:

var(B) = µ2(B ×B)− µ1(B)2, (15)

where µ2 is the second non factorial moment measure of the
target process φ [9].

Note that the first moment measure µ1 is propagated
by the CPHD filter, but the second moment measure µ2 must
be specifically determined for the variance.

B. Propagation of the localised mean target number

Following Corollary 2 in [4], the first moment measure µ+
1

of the updated process φ+ is retrieved from the first-order
functional derivative [3] of the updated PGFl (3):

µ+
1 (dx) = δ(Gφ+ [w|z1:m]; 1dx)

∣

∣

w=1

=

∑

n>0

∫

δ(w(x̄1:n); 1dx)|w=1L(z1:m|x̄1:n)P(dx̄1:n)

∑

n>0

∫

L(z1:m|x̄1:n)P(dx̄1:n)

. (16)

The notation δ designs a restricted Gâteaux differential adapted
to the derivation of composite functions (see [4] for a detailed
description). Using Corollary 1 in [4], the numerator in (16)
expands as follows:

∑

n>0

∫

δ(w(x̄1:n); 1dx)|w=1 L(z1:m|x̄1:n)P(dx̄1:n)

=
∑

n>1

∫





∑

16j6n

n
∏

i=1

µ
j
i (x̄i)



L(z1:m|x̄1:n)P(dx̄1:n),

where µ
j
i = 1dx if i = j, µ

j
i = 1 otherwise. Thus:

∑

n>0

∫

δ(w(x̄1:n); 1dx)|w=1 L(z1:m|x̄1:n)P(dx̄1:n)

=
∑

n>1

∫

∑

16j6n

L(z1:m|x̂j
1:n)P(dx̂j

1:n),

where x̂
j
i = x if i = j, x̂

j
i = x̄i otherwise. Exploiting the

symmetry of L(z1:m|x̄1:n) and P(dx̄1:n) w.r.t. to the targets
(see (4) and (7)) gives:

∑

n>0

∫

δ(w(x̄1:n); 1dx)|w=1 L(z1:m|x̄1:n)P(dx̄1:n)

=
∑

n>1

n

∫

L(z1:m|x̄1:n−1, x)P(dx̄1:n−1, dx)

= µ1(dx)
∑

n>1

nρ(n)

N

∫

L(z1:m|x̄1:n−1, x)
n−1
∏

i=1

µ̃1(dx̄i). (17)

Now, considering the expression of the likelihood (7), the
likelihood term in (17) can be split between the partitions
where the target x is not detected and those where it is detected

a produces a particular measurement z ∈ z1:m:

L(z1:m|x̄1:n−1, x) =

P (∅|x)L(z1:m|x̄1:n−1) +
∑

z∈z1:m

P (z|x)L(z1:m \ z|x̄1:n−1).

(18)

Substituting (17) and (18) into the expression of the updated
first moment measure (16) finally yields:

µ+
1 (dx) = µ1(dx)

[

P (∅|x)L1(∅) +
∑

z∈z1:m

P (z|x)

c(z)
L1(z)

]

,

(19)
where the corrector terms L1(∅) and L1(z), developed in a
similar way as shown in (13), are found to be:

L1(∅) =

∑

n>1

nρ(n)

N

∫

L(z1:m|x̄1:n−1)
n−1
∏

i=1

µ̃1(dx̄i)

∑

n>0

∫

L(z1:m|x̄1:n)P(dx̄1:n)

=

N−1

m
∑

d=0

G(d+1)(P+(∅))C(m−d)(0)ed(z1:m)

m
∑

d=0

G(d)(P+(∅))C(m−d)(0)ed(z1:m)

, (20)

and:

L1(z) =

c(z)
∑

n>1

nρ(n)

N

∫

L(z1:m \ z|x̄1:n−1)

n−1
∏

i=1

µ̃1(dx̄i)

∑

n>0

∫

L(z1:m|x̄1:n)P(dx̄1:n)

=

N−1

m−1
∑

d=0

G(d+1)(P+(∅))C(m−d−1)(0)ed(z1:m \ z)

m
∑

d=0

G(d)(P+(∅))C(m−d)(0)ed(z1:m)

.

(21)

As expected, the expression of the updated first moment
(19) is identical to Mahler’s original result (equation (63) in
[2]). For comparison’s sake, note that N = G(1)(1) from the
definition of the PGF (6), and that we apply the elementary

symmetric functions ed to sets of the form
{

P+(z)
c(z) |z ∈ z1:m

}

rather than Mahler’s
{

NP+(z)
c(z) |z ∈ z1:m

}

.

The quantity µ+
1 (dx) can then be integrated in any region

B ∈ BX and provide the updated mean target number µ+
1 (B)

in the said region:

µ+
1 (B) = µ∅

1(B)L1(∅) +
∑

z∈z1:m

µz
1(B)L1(z), (22)

where:

µ∅
1(B) =

∫

B

P (∅|x̄)µ1(dx̄) (23)

µz
1(B) = c(z)−1

∫

B

P (z|x̄)µ1(dx̄). (24)



C. Extraction of the localised variance in the target number

The second moment measure µ+
2 can be retrieved from the

second-order functional derivative [3] of the Laplace functional
of the target process φ [9]:

µ+
2 (dx × dx′) = δ2(Gφ+ [e−w|z1:m]; 1dx, 1dx′)

∣

∣

w=0

=

∑

n>0

∫

δ2(e−
∑

w(x̄i); 1dx, 1dx′)
∣

∣

∣

w=0
L(z1:m|x̄1:n)P(dx̄1:n)

∑

n>0

∫

L(z1:m|x̄1:n)P(dx̄1:n)

.

(25)

The expression of the second-order derivative in (25) is found
to be:

δ2(e−
∑n

i=1
w(x̄i); 1dx, 1dx′)

∣

∣

∣

w=0

=
∑

16j6n

1dx∩dx′(x̄j) +
∑6=

16j1,j26n

1dx(x̄j1 )1dx′(x̄j2 ). (26)

The proof is given in appendix. Substituting (26) in the
numerator of the right-hand side of (25) gives:

∑

n>0

∫

δ2(e−
∑

w(x̄i); 1dx, 1dx′)
∣

∣

∣

w=0
L(z1:m|x̄1:n)P(dx̄1:n)

=
∑

n>1

∫





∑

16j6n

1dx∩dx′(x̄j)



L(z1:m|x̄1:n)P(dx̄1:n)

+
∑

n>2

∫





∑ 6=

16j1,j26n

1dx(x̄j1 )1dx′(x̄j2 )



L(z1:m|x̄1:n)P(dx̄1:n).

Now, exploiting the symmetry of L(z1:m|x̄1:n) and P(dx̄1:n)
w.r.t. to the targets (see (4) and (7)) yields:

∑

n>0

∫

δ2(e−
∑

w(x̄i); 1dx, 1dx′)
∣

∣

∣

w=0
L(z1:m|x̄1:n)P(dx̄1:n)

=
∑

n>1

n

∫

1dx∩dx′(x̄)L(z1:m|x̄1:n−1, x̄)P(dx̄1:n−1, dx̄)

+
∑

n>2

n(n− 1)

∫

L(z1:m|x̄1:n−2, x, x
′)P(dx̄1:n−2, dx, dx

′).

(27)

The first term in (27) is developed exactly as shown in
(17) and, once divided by the denominator (13), yields
µ+
1 (dx ∩ dx′).

Using (4), the second term in (27) can be developed as
follows:
∑

n>2

n(n− 1)

∫

L(z1:m|x̄1:n−2, x, x
′)P(dx̄1:n−2, dx, dx

′)

= µ1(dx)µ1(dx
′)×

∑

n>2

n(n− 1)ρ(n)

N2

∫

L(z1:m|x̄1:n−2, x, x
′)

n−2
∏

i=1

µ̃1(dx̄i).

(28)

Then, considering the expression of the likelihood (7), the
likelihood term in (28) can be split between the partitions

where none of the targets x, x′ are detected, those where only
one is detected and those where both are detected. That is:

L(z1:m|x̄1:n−2, x, x
′)

= P (∅|x)P (∅|x′)L(z1:m|x̄1:n−2)

+ P (∅|x)
∑

z∈z1:m

P (z|x′)L(z1:m \ z|x̄1:n−2)

+ P (∅|x′)
∑

z∈z1:m

P (z|x)L(z1:m \ z|x̄1:n−2)

+
∑6=

z,z′∈z1:m

P (z|x)P (z′|x′)L(z1:m \ z, z′|x̄1:n−2). (29)

Substituting (29) into (28), then (27) into the expression of the
updated second moment measure (25) finally yields:

µ+
2 (dx× dx′)

= µ+
1 (dx ∩ dx′) + P (∅|x)µ1(dx)P (∅|x′)µ1(dx

′)L2(∅)

+

[

P (∅|x)µ1(dx)
∑

z∈z1:m

P (z|x′)µ1(dx
′)

c(z)
L2(z)

]

+

[

P (∅|x′)µ1(dx
′)
∑

z∈z1:m

P (z|x)µ1(dx)

c(z)
L2(z)

]

+





∑ 6=

z,z′∈z1:m

P (z|x)µ1(dx)

c(z)

P (z′|x′)µ1(dx
′)

c(z′)
L2(z, z

′)



 ,

(30)

where the corrector terms L2(∅), L2(z), and L2(z, z
′), devel-

oped in a similar way as shown in (13), are found to be:

L2(∅) =

N−2

m
∑

d=0

G(d+2)(P+(∅))C(m−d)(0)ed(z1:m)

m
∑

d=0

G(d)(P+(∅))C(m−d)(0)ed(z1:m)

(31)

L2(z) =

N−2

m−1
∑

d=0

G(d+2)(P+(∅))C(m−d−1)(0)ed(z1:m \ z)

m
∑

d=0

G(d)(P+(∅))C(m−d)(0)ed(z1:m)

(32)

L2(z, z
′) =

N−2

m−2
∑

d=0

G(d+2)(P+(∅))C(m−d−2)(0)ed(z1:m \ z, z′)

m
∑

d=0

G(d)(P+(∅))C(m−d)(0)ed(z1:m)

. (33)

Using the definition of the variance (15), the integration of the
second moment measure (30) over B×B and the first moment



measure (19) over B finally yields the variance var+(B):

var+(B)

= µ+
1 (B) + µ∅

1(B)2
[

L2(∅)− L1(∅)
2
]

+ 2µ∅
1(B)

∑

z∈z1:m

µz
1(B) [L2(z)− L1(z)L1(∅)]

+
∑

z,z′∈z1:m

µz
1(B)µz′

1 (B)
[

L
6=
2 (z, z

′)− L1(z)L1(z
′)
]

, (34)

where L
6=
2 (z, z

′) = L2(z, z
′) if z 6= z′, zero otherwise.

Note the similarities between the expressions of the updated
first moment measure (22) and the updated variance (34);
most of the terms needed for the computation of the variance
are indeed required for the propagation of the first moment
measure µ1 in the usual CPHD filter. The additional corrector
terms L2(∅) and L2(z) are close to L1(∅) and L1(z) in
the sense that they do not involve additional elementary
symmetric functions ed, and could be computed in parallel
with a reasonable additional cost. The computation of the
corrector term L2(z, z

′), however, requires the computation
of the new elementary symmetric functions ed(z, z

′) for every
pair of distinct measurements (z, z′).

Overall, the additional computation of the localised variance
alongside the usual CPHD update should increase the
complexity of the filter of one order of magnitude to
O(m3 logm), where m is the number of new measurements,
although a more detailed study involving a practical
implementation should be necessary to conclude on this
point. In any case, the expression of the localised variance is
significantly simplified in the restrictive case of the PHD filter;
an analogous study for the PHD filter had been previously
conducted and successfully tested on simulated data [7].

V. CONCLUSION

In this paper, the multi-object filtering framework and the novel
derivation rules proposed in [3], [4] have been successfully
applied to produce high-order information statistics on the
output of the Cardinalized Probability Hypothesis Density
(CPHD) filter. In addition to providing the updated first
moment density (or intensity) of the propagated multi-target
density through a novel approach, this paper describes the
construction of a novel second-order information statistic, the
localised variance in the target number within any region of
the state space.

Extracted at each iteration, the localised variance is a
meaningful statistical tool which provides a measure of the
uncertainty associated to the estimated mean target number
given by the first moment density. Future developments should
include a detailed study of the expression of the variance,
notably in order to determine and analyse its boundaries,
and an implementation of the results presented in this paper
to approach sensor management decision problems with a
CPHD filter.
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APPENDIX

Expansion of δ2(e−
∑

n
i=1

w(x̄i)); 1dx, 1dx′)
∣

∣

w=0
(see (26)).

Proof: Expanding the exponential gives:

δ2(e−
∑n

i=1
w(x̄i)); 1dx, 1dx′)

∣

∣

∣

w=0

=
∑

p>0

(−1)p

p!
δ2

((

n
∑

i=1

w(x̄i)

)p

; 1dx, 1dx′

)∣

∣

∣

∣

∣

w=0

=
∑

p>0

(−1)p

p!

∑

p1+···+pn=p

(

p

p1:n

)

δ2

(

n
∏

i=1

(w(x̄i))
pi ; 1dx, 1dx′

)∣

∣

∣

∣

∣

w=0

,

where
(

p
p1:n

)

is the multinomial

(

p

p1:n

)

=

(

p

p1, . . . , pn

)

=
p!

p1! . . . pn!
. (35)

Besides, using Corollary 1 in [4] gives:

δ2

(

n
∏

i=1

(w(x̄i))
pi ; 1dx, 1dx′

)∣

∣

∣

∣

∣

w=0

=
∑

pj>2

2

(

pj

2

)

1dx(x̄j)1dx′(x̄j)0
∑

pi−2

+
∑

pj1
,pj2

>1
j1 6=j2

(

pj1
1

)(

pj2
1

)

1dx(x̄j1 )1dx′(x̄j2 )0
∑

pi−2.

Thus, it follows that:

∑

p>0

(−1)p

p!

∑

p1+···+pn=p

(

p

p1:n

)

δ2

(

n
∏

i=1

(w(x̄i))
pi ; 1dx, 1dx′

)∣

∣

∣

∣

∣

w=0

=
(−1)2

2!

∑

p1+···+pn=2
∃j|pj>2

2

(

2

p1:n

)(

pj

2

)

1dx∩dx′(x̄j)

+
(−1)2

2!

∑

p1+···+pn=2
∃j1 6=j2|pj1

,pj2
>1

(

2

p1:n

)(

pj1
1

)(

pj2
1

)

1dx(x̄j1 )1dx′(x̄j2 )

=
1

2

∑

16j6n

2

(

2

2, 0

)(

2

2

)

1dx∩dx′(x̄j)

+
1

2

∑ 6=

16j1,j26n

(

2

1, 1

)(

1

1

)(

1

1

)

1dx(x̄j1 )1dx′(x̄j2 )

=
∑

16j6n

1dx∩dx′(x̄j) +
∑ 6=

16j1,j26n

1dx(x̄j1 )1dx′(x̄j2 ).
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