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Abstract—In environments of scarce hygiene it is of pri-
mary importance to detect potentially harmful concentrations
of pathogens in drinking water. In many situations, however,
accurate analysis of water samples is prohibitively complex and
often requires highly specialised apparatuses and technicians. In
order to overcome these limitations, a method to employ video
processing to assist microfluidics water filtering apparatuses is
proposed. Through the automated analysis of videos captured
at the output of such devices it is possible to extract useful
information that could control an autonomous calibration, hence
eliminating the need of an expert and possibly leading to
the construction of readily employable water quality assessing
devices.

Index Terms—Waterborne pathogens, microfluidics, tracking,
water contamination, detection, classification.

INTRODUCTION

Often during major combat situations hygiene can be poor
and access to potable water limited. Additionally, military
personnel can also be exposed to potentially contaminated
water during other scenarios, e.g., training and relaxation or
deployment for humanitarian aid. Illness evidently reduces
operational capability and is highly undesirable. During the
1990s norovirus outbreaks on US aircraft carriers affected up
to 44% of the crews [1]. Other waterborne pathogens, e.g.,
protozoa such as Cryptosporidium and Giardia [2], [3], [4],
are also potential risk factors though much less is known about
their prevalence in military disease outbreaks. However, these
pathogens are resistant to disinfection by chlorine and have
extremely low infectious doses explaining why these have been
responsible for major outbreaks of waterborne gastroenteritis
in Europe and the US [5].

Water quality monitoring methods [6], [7], [8], especially
those which are automated and easy to use, could play a
significant role in reducing the risk of disease in military
scenarios. Water utilities regularly monitor water quality to
ensure the safety of supply. However, existing methods are
time consuming and require highly trained microbiologists [9].

In this article new approaches to water monitoring, fo-
cussing on the use of automated microfluidic systems are
being developed. Microfluidics is an emerging area of focus
for waterborne pathogen sample processing and detection [10].

Within microfluidics devices observing the position and
flow behaviour of pathogens is critical to the optimisation of
designs and operating parameters as well as in the development
of early warning approaches where the presence of a particle
of a particular size or shape at a certain channel location could
indicate a pathogen.

The method of pathogen observation proposed hereafter
exploits video processing techniques to first detect and then
classify particles in the output flow of a microfluidics ap-
paratus. A digital camera positioned at the outlet of the
device records the flow of particles. In the detection stage, the
video frames are individually processed to retrieve position
coordinates and size estimation. The obtained data is then
fed into a Hypothesised filter for Independent Stochastic
Populations (HISP) [11] which returns particle tracks and
velocity information and which is able to classify particles
according to their dynamic behaviour.

I. MICROFLUIDICS DEVICES

To properly assess the level of water contamination, an
efficient detection system should be able to screen out other
particles present in the water, evaluate the concentration of
pathogens in the water sample and give the means to determine
species and viability of the organisms.

Retrieving and correctly interpreting the output of such
devices could make the engineering of automated calibration
schemes possible. Miniaturised fluidic devices in which the
output can be directly observed and recorded with a camera are
optimally suited to achieve automation. Given their means of
particle segregation and the ease of recording the output flow
with a digital camera, we identify two suitable set-ups. Passive
hydrodynamic focussing, which exploits the geometries of
microchannels to sort particles, and dielectrophoresis devices,
in which an applied electric field segregates the particles of
interest by viability and/or species, thus indicating infectivity.
Preliminary results have been obtained for these two set-ups
for particles as small as bacteria.

A. Passive hydrodynamics

As part of the Aquavalens project, Jimenez et al. have
developed a sample processing microfluidics device based on a
passive hydrodynamic method'. By controlling the flow rate in
a carefully designed channel, chosen particles can be focused
along certain streams within the channel, see Figure 1. Viable
and non-viable pathogens and different species of pathogens
usually show dissimilarities in size and deformability, which
determines their behaviour and final lateral channel position.
Therefore, they can be collected into different outlets as
required.

Detection methods applied to the output streams of the
device could determine the effectiveness of the approach and

Ifurther design details cannot be given due to a pending patent application.



Fig. 1. Image of the device working with a high concentration of beads of
a particular size. The image illustrates how particles of a particular size are
sorted into a narrow size band, relative to the width of the channel, and can
therefore be concentrated and collected by appropriate design of the outlet
area. Different size particles will be located at different points across the
channel.

produce a quantitative analysis of the outlet flows. These
detections could also act as an early warning system for
pathogen presence.

B. Dielectrophoresis

Polarisable particles such as biological cells can be trapped
and manipulated by applying an inhomogeneous electric field
in a phenomenon called dieloctrophoresis (DEP) [5].

The direction and magnitude of the force acting on the
particles depend on the polarisability of the particles with
respect to the medium. Viable and non-viable pathogen oocysts
have been shown to behave differently under the force of the
same electric field [12].

Figure 2 shows the output of a DEP electrorotation device.
A set of carefully positioned electrodes creates a pattern of
electric fields to trap particles in the centre of the device and
allow them to rotate. In the case of pathogen filtering, it has
been shown that organisms behave differently according to
their viability. In particular, their rate and direction of rotation
differ; non-viable oocysts tend to rotate clockwise and faster
than viable ones.

Fig. 2. Image of the output of a DEP electrorotation device. The electrodes
(in black) generate an electric field such that the particles are kept in a specific
area, but can rotate within it [12].

A continuous flow system has recently been developed util-
ising DEP to direct oocysts to different outlets, see Figure 3.
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Fig. 3. The images on the left indicate the device design. Top picture shows
the central channel where electrodes are located. The bottom picture shows the
outlets where particles influence by the DEP have moved to the top half of the
channel and are collected through the top outlet. The right image shows two
different particle trajectories indicating how the degree of separation between
then increases along the channel..

Video processing techniques can be applied to characterise the
performance at different flow rates and electric fields, in order
to assist in determining optimal operating parameters.

II. ANALYSIS

The aim of an automated video analysis in this context is
that of extracting meaningful information associated with each
of the observed particles individually, such as their position,
size and velocity, as time evolves. The obtained data can
then be made use of in constructing indicators of statistical
behaviour that are descriptive of the system and readily
provide useful knowledge for contamination level assessment
or apparatus calibration response.

To perform such information extraction, the procedure con-
sists of two main steps; a detection step, which retrieves
position coordinates and related uncertainty and estimated size
for each particle at each video frame, and a classification
step, which exploits a multi-object filter to obtain tracks of
the detected objects and classify them according to their
appearance or behaviour.

A. Detection

To perform tracking of objects in microfluidics videos it is
necessary to first obtain accurate detections of such objects for
each video frame. In other words, it is necessary to extrapolate
an estimate of the position and associated uncertainty for each
object in every frame. An important condition on the retrieved
information is that the positions and deviations obtained from
the video frames are independent from one another. This is
because the tracker relies on the assumption that observations
at different time steps are not correlated with each other.

The problem is to recognise objects of interest in an image
according to the known features that make them distinguish-
able from the rest of the image. The objects that are processed
through different microfluidics set-ups can be of varied nature
and generally the features that make them recognisable have
to be chosen depending on the specific situation [13], [5].

In most biological applications of microfluidics particle
sorting, however, the particles of interest tend to present a
roughly spherical shape and it is precisely this feature, along



with their intensity difference with the immediate surrounding,
that was largely exploited in the hereafter described detection
method.

Prior to any recognition algorithm, a binary image is gen-
erated from the video frame under analysis via thresholding.
This operation needs to be applied either to the image or to its
negative, depending whether the particles to be detected are
darker or brighter than the background.

To seek for circles in the binary image, with conditions
imposed on the possible radii, the first part of the algorithm
employed uses the circular Hough transform. Such method
takes all pixels of high intensity gradient as candidate perime-
ter pixels p;. Each candidate pixel is then made to cast a vote
on the pixels that trace out a circular perimeter of different
potential radii r, around it and if a particular combination
of pixel location and guess radius has a vote over a certain
threshold that pixel location and guess radius determine a
detected circle [14], [15]. That is, given an image I € R™"*"™,
a votes array V, € R"*"™ for each guess radius 4 is computed

as follows
k
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where C(p;,r4) € R™ ™ is an array of ones on the perimeter
of a circle with center p; and radius 7, and zeros everywhere
else. k is the number of perimeter candidate pixels. In every
vote array V, those elements that are over a certain threshold
determine a detected circle in the image I with the coordinates
of such an element as its center and ry as its radius.

It is worth noting that this first step provides not only the
position of the detected objects, but also their radius and hence
their surface area. It is therefore possible to classify particles
according to their size and group them in categories that have
approximately the same mean area.

The above described method proved to be quite successful
at recognising and locating single particles with limited flow
rate. However, in microfluidics channels, particles occasionally
move at faster rates or agglomerate in small clusters.

To address such situations, the second step in the detection
algorithm considers all objects within a given area interval as
candidate high speed objects or agglomerates. Their surface
area is then compared with the mean area of each of the
previously detected spheres groups. Objects which are found
to have an area equal to that of a particular category within a
certain tolerance are classified as belonging to that category.
Objects which are found to be significantly smaller than any
of the previously observed sizes are discarded as unimportant
features in the image. Objects which are found to have an area
significantly bigger than the area of any of the categories are
labelled as agglomerates.

To locate objects within an estimated agglomerate, a small
subsection of the image containing the agglomerate is con-
volved with different circles, each having the mean size of a
particular category. The position and radius that yields the
highest value in the convolved image are taken as center
and radius of a detected object. The detected object is then

subtracted from the image and the process is repeated until
the remaining agglomerate has an area which is considerably
less than that of any category.

B. Classification

Tracking and classification are performed jointly in order
to provide a full probabilistic picture of the situation. This
has been made possible with the introduction of a track-
ing framework modelling partially distinguishable populations
[11]. This level of generality is required to perform principled
multi-object estimation where specific information about ob-
jects, referred to as track, is propagated. This, in turn, allows
for performing classification by distinguishing objects with
different behaviours. The multi-object estimation algorithm
that is used in this article is called the Hypothesised filter
for Independent Stochastic Populations, or HISP filter [11],
[16], [17], and is an approximated but tractable version of
a multi-object Bayes filter. Joint tracking and classification
has already been performed with the HISP filter for different
applications such as harbour surveillance [18]. The principle
of the approach is to perform multi-object estimation on a
population that is composed of two or more sub-populations.
In order to obtain information on this additional aspect, each
sub-population should have distinct characteristics such as
different motion models or different trajectories. In this article,
we consider both location- and motion-based classification.

This way of classifying particles do not rely on visual
features that could be obtained from the video. In consequence,
the quality of the images acquired by the digital camera does
not affect the performance of the classification algorithm as
long as the detection technique described in Section II-A can
be applied.

III. EXPERIMENT

In order to demonstrate the proposed detection algorithm in
a controlled environment, it was necessary to simulate a flow
of particles in a microfluidic channel in vitro.

This was achieved by using spherical beads of diameters 7
microns and 10 microns suspended in a mixture of water and
liquid detergent in a flow channel 300 microns in diameter.
Adjustable flow paths were set up prior to the particles
entering the channel using an acoustical sorting process which
created resonant conditions using an ultrasonic transducer and
a reflective boundary.

The standing wave that arose due to these resonant condi-
tions created nodes which behave as pressure maxima and
minima with axial forces drawing particles towards them;
the particles were then drawn together by lateral forces and
particle-particle interactions, resulting in precise flow streams.

The particles then entered the channel until displaced ap-
proximately 150 microns orthogonal to the direction of travel
through laser controlled optical tweezing. The beam power
and waist were chosen for optimal performance based on the
desired particle size and density.

The video was captured with a Prosilica EC1280 firewire
camera imaging the outlet of the above described apparatus



and was shot at 23 frames per second; a captured frame can
be viewed in Figure 4.

Fig. 4. Image of the output of a DEP electrorotation device. The electrodes (in
black) generates an electric field such that the particles are kept in a specific
area, but can rotate within it.

A. Detection

The detection method was found to be very effective pro-
vided the particles to be detected do not differ by more than a
factor of two in radius from each other and that the speed at
which they move is still sufficiently low such that the particle
does not move by more than twice its size in the acquisition
time of one frame. These assumption may not always hold
for every particle sorting apparatus and the method might
need to be modified to accommodate certain situations. In the
particle sorting data that were processed and are reported here,
however, these assumption mostly held true and the detection
was found to be quite accurate. Results of the detection method
described above are shown for one particular frame taken from
a sorting microfluidics video in Figure 5, where the particles
detected by the first part and the second part of the algorithm
are highlighted in different colours.
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Fig. 5. Detected locations of particles overlaid on the video frame they have
been extracted from. The detections highlighted in red are obtained as a result
of the circular Hough transform filtering and the detections highlighted in blue
are obtained employing the second section of the algorithm. It can be seen
how, although the circular Hough transform is successful at recognising most
of the particles, it misses particles which are part of a cluster and a particle that
moves faster than the others. The second section of the algorithm effectively
compensates for such missed detections.

As for the deviations associated with the retrieved positions,
these were taken to be symmetric and the ones related to
particles detected through the first step were set to roughly

their retrieved diameter and those obtained from the second
step were set to twice their diameter. This is because successful
detection through the circular Hough transform resulted to be
very precise in this context, whereas detection of fast moving
particles and clustered particles yields less precise estimates
of their centre positions.

In order to assess the proposed detection method, the perfor-
mance of the algorithm in terms of cardinality and localisation
has been evaluated using the OSPA distance [19] on simulated
data. For the simulation to be sufficiently representative of the
real problem, an average number of 12 synthetic beads of
different sizes have been added to a real background in 40
different configurations including agglomerates. The average
OSPA distance, with a 2-norm and a cut-off of 10 px, is found
to be equal to 0.64 with a standard deviation of 0.0818. This
result indicates that most of the beads are found in the image
without creating many false positives and that these beads are
accurately localised.

B. Classification

We consider the experiment described in Section III and per-
form the classification with the following parameters: sorted
and unsorted beads both have a motion model based on a
constant velocity up to the position of the laser. The unsorted
beads are unaffected by the laser whereas the sorted ones
are diverted by it, which is modelled as a force applied
orthogonally. In the latter model, two additional forces are
considered: the first one is the friction due to the viscosity
of the fluid and the second one is a trapping effect due
to the laser, which compensates for the motion of the fluid
along the channel. The uncertainty on each motion model
is characterised by an additive noise on the acceleration.
A location-based classification is utilised for counting the
number of beads that exit the field of view of the camera
through the far end of the channel and the number of beads that
are stopped on the border of the channel around the location
of the laser. The obtained numbers are indicated in the titles of
Figures 6(a) and 6(b). Two examples are given in these figures
where tracks corresponding to beads with different behaviours
are displayed with various colours. To handle the fact that
all beads have the same motion model up to the position of
the laser, an additional class named “Unclassified” is created
and associated to beads for which the classification is too
uncertain. Specifically, the probability for one bead to be part
of a given class has to be above 75% for the corresponding
track to be displayed with the associated colour.

IV. CONCLUSION

The employment of video processing techniques to assist
the operation of microfluidic devices could allow for the
production of portable, readily employable and extremely
accurate water contamination assessing tools, ideally suited
for the needs of military operations. The detection method
presented here allowed efficient detection of differently sized
microspheres flowing through the outlet of a microfluidic de-
vice. The two techniques described in section II-A proved to be



Classification for microfluidics: number of unsorted: 20 # sorted: 2

Unclassified
FP— Unsorted
Sorted

(a) Time step 606: one bead is being diverted by the laser (blue)
while the other one has not been affected (magenta)

Classification for microfluidics: number of unsorted: 22 # sorted: 3

Unclassified
—— Unsorted
Sorted

(b) Time step 673: one bead is not classified yet (red) and the
other one has not been affected by the laser (magenta)

Fig. 6. Examples of classification with the HISP filter. Observations are
indicated in yellow, tracks are displayed with different colours depending on
their classification, and the trajectory for each track is shown in fading green.

effective at obtaining accurate estimates of particle positions
and sizes in every video frame with tolerable amounts of false
alarms and missed detections.

The classification of the observed particles was carried out
employing the HISP filter. Such algorithm was able to extract
particle tracks and associated velocity along with the related
uncertainties. The obtained information was then used to
classify the objects into sorted and unsorted particles. Having
such detailed information for every single particle flowing
through the outlet of a microfluidic channel gives a complete
measure of the apparatus state of operation and hence can be
used as a reliable and automated feedback for the calibration
of the device through the optimisation of its many parameters.

As in most cases the relationship between output particle
behaviour and system parameters is known, the data retrieved
by the classification can be used to control a proper auto-
mated response. For instance, if a stream of particles appears
clustered and poorly focused at the outlet of a spiral channel
device, it can be deduced that the flow rate through the
channel is too low. From the autonomously obtained data
it is then possible to quantify these characteristics of the
stream and trigger an appropriate increase of flow rate. In
many cases pathogen size and dynamic behaviour are also
indicators of species and viability, hence a measure of the
level of contamination of the sample can be deduced from a

classification method analogous to that described above.
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