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Chapter 1

Bayesian inference

1.1 Background

We first consider a single-variate random variable θ on a parameter space Θ representing the uncertainty
about a parameter of interest. The probability distribution of θ is denoted pθ(·). In general, Θ can be
a subset of the set of integers Z or a subset of the real line R. These subsets will most commonly be the
positive natural numbers N = {1, 2, 3, . . . }, the non-negative natural numbers N0 = {0, 1, 2, . . . } or the
interval [0, 1].

A different font will be used to denote random variables and their realisations, e.g. x,y,θ and x, y, θ
respectively. The difference between these notations is small enough to be ignored if necessary and yet
visible enough to highlight the difference between the two concepts in more difficult situations. For
instance, when defining the expectation of θ as

E(θ) =
�

Θ

θ pθ(θ) dθ,

it appears that the argument of E(·) is different from the variable θ in the integral, as it should be for
the equation to be well defined.

The objective is to learn about some unknown/random quantity of interest, modelled by the random
variable θ on Θ, by accumulating information related to θ. Before receiving any additional informa-
tion, we often have some initial knowledge about the credibility of the different possible values of this
parameter, that we encode into a probability distribution pθ(·) on Θ.

Some textbooks indicate the argument when denoting probability distributions, for instance pθ(θ).
We consider a different approach and write pθ(·), which underlines the fact that the considered probability
distribution is indeed a function while highlighting the difference between the function and its value at
a given parameter θ ∈ Θ.

We use the term probability distribution to refer to any probability mass function (p.m.f.) on a discrete
space or to any probability density function (p.d.f.) otherwise. Note that if x is a random variable on
R with probability density function px(·), then there might be some x ∈ R such that px(x) > 1. For
instance, if any given x ∈ R denotes a distance from the origin measured in meters, then px(x) is the
density of probability per meter. However, we indeed have

�

B

px(x) dx ∈ [0, 1]

for any subset B of R. This is because dx can be seen as being expressed in meters, which makes the
integral dimensionless.

Once a prior distribution representing our knowledge about θ has been defined, we need to find a
way to update this knowledge in the light of newly received information. We assume that this new
piece of information takes the form of a point observation y in an observation space Y. In general, an
observation originates from a random experiment and is only indirectly related to θ (otherwise there
would be no inference problem). Therefore, we need to model how the different parameter values in
Θ affect the distribution of the corresponding observation random variable y. This is achieved via a
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conditional probability distribution py|θ(· | ·), which verifies

�

Y
py|θ(y | θ) dy = 1

for any θ ∈ Θ. The notation py|θ(· | θ) is a shorthand for py(· |θ = θ). In this context, py|θ(· | ·) is usually
referred to as the data distribution. The joint probability distribution pθ,y(·) on Θ×Y can be expressed
via conditional and prior distributions in two different ways:

pθ,y(θ, y) = py|θ(y | θ)pθ(θ)
= pθ|y(θ | y)py(y).

This simple relation leads to the most fundamental result in Bayesian inference.

Theorem 1.1 (Bayes’ rule). Let the prior distribution of θ on Θ be pθ(·) and the let the random
variable y on Y have conditional distribution py|θ(· | ·). If y is a given realisation of y then the posterior
distribution of θ given the observation y is

pθ|y(θ | y) =
py|θ(y|θ)pθ(θ)

py(y)
(1.2)

where py(·) is the marginal distribution of y defined as

py(y) =

�

Θ

py|θ(y|θ)pθ(θ) dθ.

A simple way to verify that there is a gain of information when going from the prior pθ(·) to pθ|y(· | ·)
is to rewrite the variance of the prior distribution as

var(θ)� �� �
prior variance

= E(var(θ |y))� �� �
expected posterior variance

+var(E(θ |y)),

which shows an improvement in terms of variance since var(E(θ |y)) ≥ 0.
Since the observation y is given, it is also natural to see the data distribution as a function of the

parameter with y fixed: the function θ �→ py|θ(y | θ) can then be referred to as the likelihood function.
Also, since y is fixed and since the term py(y) in the denominator of (1.2) does not depend on θ, it follows
that this term can be considered as a normalising constant and Bayes’ rule can be simply expressed as

pθ|y(θ | y) ∝ py|θ(y|θ)pθ(θ).

Summarising the information a posteriori. The posterior pθ|y(· | y) contains all the information
one might be interested in, which is sometimes more than required. The simplest way of summarising a
posterior distribution is via point estimates, for instance the mean E(θ |y = y), the median or the mode,
defined as

θMAP = argmax
θ∈Θ

pθ|y(θ | y),

assuming it exists, where MAP stands for Maximum A Posteriori. However, summarising a posterior
distribution by a single point can be misleading as it does not allow for gauging the underlying amount
of uncertainty. This concern can be addressed by also considering posterior quantiles or intervals. Of
particular interest is the 100(1 − α)% highest posterior density region which is defined as the subset
B ⊆ Θ that contains 100(1− α)% of the posterior probability, i.e.

�

B

pθ|y(θ | y) dθ = 1− α,

and such that pθ|y(θ | y) ≥ pθ|y(θ� | y) for any θ ∈ B and any θ� ∈ Θ \ B. The advantage of the highest
posterior density region is best seen on multimodal probability distributions, as illustrated in Figure 1.1.
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Figure 1.1: 95% highest density region for a Gaussian mixture.

Conditional independence of observations. In some cases, the objective is to predict the distri-
bution of another observation originated from the same experimental setting. Let y� be the random
variable describing this experiment. It is common (and convenient) to assume that y� does not depend
on y for any given value θ of the parameter of interest that is, formally

py,y�|θ(y, y
� | θ) = py|θ(y | θ)py�|θ(y

� | θ).

In particular, this assumption allows for applying Bayes’ rule once more directly on the posterior distri-
bution pθ|y(· | y), which yields

pθ|y,y�(θ | y, y�) ∝ py�|θ(y
�|θ)pθ|y(θ | y).

This assumption of conditional independence between observations will generally apply to the model
we will consider and, if we receive a sequence (y1, . . . , yn) of n observations resulting from the sequence
of random variables y1:n = (y1, . . . ,yn), then it will be assumed that yk and yk� will be conditionally
independent given θ for any k, k� ∈ {1, . . . ,n}. Formally, this assumption implies that

py1:n|θ(y1, . . . , yn | θ) =
n�

k=1

pyk|θ(yk | θ)

so that the posterior distribution of θ given (y1, . . . , yn) is characterised by

pθ|y1:n
(θ | y1, . . . , yn) ∝

n�

k=1

pyk|θ(yk | θ)pθ(θ).

This expression can be slightly simplified by assuming that the conditional distribution of the observation
random variables is the same for any index in {1, . . . ,n}, which will be denoted py|θ(· | ·). In this case,
it follows that

pθ|y1:n
(θ | y1, . . . , yn) =

�n
k=1 py|θ(yk | θ)pθ(θ)
py1:n

(y1, . . . , yn)
(1.3)

with

py1:n
(y1, . . . , yn) =

� n�

k=1

py|θ(yk | θ)pθ(θ) dθ.

Note that in this case, the sequence of random variables (y1, . . . ,yn) is exchangeable: any reordering of
the sequence would not change the associated joint probability distribution, that is, formally

py1,...,yn
(·) = pyσ(1),...,yσ(n)

(·)

for any permutation σ : {1, . . . ,n} → {1, . . . ,n}.
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Figure 1.2: Estimating an unknown position from GPS data in Google Maps R�.

Example 1.1. To determine your position, your smartphone (or any GPS-enabled device), uses a se-
quences of observations from satellites. Figure 1.2 illustrates the output of some estimation algorithm
used by Google to determine an unknown/uncertain position from GPS data. The larger blue circle
gives an idea about the uncertainty in the current estimate, which we expect to shrink in time (when
additional data is received).

1.2 Standard distributions and conjugate priors

Equations of the form (1.3) can be difficult to work with in practice. The first step to address that
difficulty is to assume that the data distribution py|θ(· | ·) and the prior distribution pθ(·) take a particular
parametric form such as

Bernoulli p.m.f. on {0, 1} with parameter p ∈ (0, 1)

Ber(k; p) = pk(1− p)1−k =

�
1− p if k = 0

p if k = 1

The parameter p is the probability of success.

Binomial p.m.f. on {0, . . . ,n} with parameter n ∈ N0 and p ∈ (0, 1)

Bi(k;n, p) =

�
n

k

�
pk(1− p)n−k

The parameter p is the probability of success and n is the number of trials.

Poisson p.m.f. on N0 with parameter λ > 0

Po(k;λ) =
λk

k!
exp(−λ)

Gamma p.d.f. on (0,∞) with parameters α > 0 and β > 0

Ga(x;α,β) =
βα

Γ(α)
xα−1 exp(−βx)

where Γ(·) is the gamma function, satisfying Γ(k + 1) = kΓ(k) for any k > 0. The positive scalars
α and β are respectively called the shape parameter and the rate parameter. If x ∼ Ga(· ;α,β)
then E(x) = α/β and var(x) = α/β2.
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Beta p.d.f. on [0, 1] with shape parameters α > 0 and β > 0

Be(x;α,β) =
1

B(α,β)
xα−1(1− x)β−1

where B(·) is the beta function, satisfying

B(α,β) =
Γ(α)Γ(β)

Γ(α+ β)
.

Normal p.d.f. on R with mean µ ∈ R and variance σ2 > 0

N(x;µ,σ2) =
1√
2πσ2

exp
�
− 1

2σ2
(x− µ)2

�
.

Uniform p.d.f. on R with parameters a, b ∈ R such that a < b

U(x; a, b) =

�
1

b−a if x ∈ [a, b]

0 otherwise

Student’s t p.d.f. on R with ν > 0 degrees of freedom

St(x; ν) =
Γ( ν+1

2 )

Γ( ν2 )
√
νπ

�
1 +

x2

ν

�− ν+1
2

Generalised Student’s t p.d.f. on R with ν > 0 degrees of freedom and with parameters µ ∈ R and σ > 0

St(x; ν,µ,σ) =
Γ( ν+1

2 )

Γ( ν2 )
√
νπσ

�
1 +

1

ν

(x− µ)2

σ2

�− ν+1
2

In the standard distributions described above, a semicolon “;” was used instead of the conditioning
bar “|” to indicate that one or several of the arguments might not be part of the inference problem and
might be known instead.

Example 1.2. We consider a large population for which we want to know the proportion of individuals
with a given trait. We denote by θ the random variable on Θ = [0, 1] describing the uncertainty about
this proportion of interest and by pθ the associated probability distribution. In order to learn about
θ, we observe the presence of the trait in n individuals in the population and denote by y1, . . . , yn
the corresponding observations taking value in {0, 1}, 1 for success, that is the trait is present, and 0
for failure, the trait is absent. For a given parameter value θ ∈ Θ, the conditional distribution of the
corresponding random variables (y1, . . . ,yn) is deduced to be

py1:n|θ(y1, . . . , yn | θ) =
n�

k=1

Ber(yk; θ).

However, since the random variables y1, . . . ,yn are exchangeable, the data provided by the observations
y1, . . . , yn can be more simply expressed as a single piece of data y = y1+ · · ·+ yn with data distribution
py|θ(y | θ) = Bi(y;n, θ). The beta distribution is defined on [0, 1], can be used to express a wide range
of prior knowledge on θ and, as such, is a suitable prior distribution. Formally, we consider pθ(θ) =
Be(θ;α,β) for some α > 0 and β > 0 and it follows that

pθ|y(θ | y) ∝ θy(1− θ)n−yθα−1(1− θ)β−1

= θα+y−1(1− θ)β+n−y−1,

so that pθ|y(θ | y) = Be(θ;α+ y,β + n− y).

There are two important aspects in Example 1.2: a) we did not have to compute the normalising
constant py(y) to find the posterior distribution, and b) the posterior distribution is of the same form
as the prior distribution, that is, they are both beta distributions (although with different parameters).
This second aspect is very important in Bayesian inference and bears a specific name as follows.
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Definition 1.1. A class of prior distributions P is said to be conjugate for a class of likelihood functions
F if pθ|y(· | ·) ∈ P for all py|θ(· | ·) ∈ F and all pθ(·) ∈ P.

Here are few useful examples of conjugacy:

Binomial-Beta The class of priors P = {Be(· ;α,β) : α > 0,β > 0} is conjugate for the class of likelihoods
F = {θ �→ Bi(· ;n, θ) : n ∈ N0}

Normal-Normal The class of priors P = {N(· ;µ0,σ
2
0) : µ0 ∈ R,σ2

0 > 0} is conjugate for the class of
likelihoods F = {θ �→ N(· ; θ,σ2) : σ2 > 0}

Gamma-Gamma The class of priors P = {Ga(· ;α0,β0) : α0 > 0,β0 > 0} is conjugate for the class of
likelihoods F = {θ �→ Ga(· ;α, θ) : α > 0}

Another illustration of this concept is given in the following example based on the Poisson p.m.f. and
the gamma p.d.f.

Example 1.3. We now assume that the random experiments y1, . . . ,yn yielding the observations y1, . . . , yn
are integer-valued random variables that are conditionally independent given the unknown parameter θ
and distributed according to a Poisson p.m.f. with rate θ, that is

pyi|θ(yi | θ) = Po(yi; θ) =
θyi

yi!
exp(−θ)

for any i ∈ {1, . . . ,n}. The likelihood for the n observations can then be expressed as

py1:n|θ(y1, . . . , yn | θ) =
θ
�n

i=1 yi

�n
i=1 yi!

exp(−nθ).

The parameter of a Poisson p.m.f. is a positive scalar so that the random variable θ can be assumed to
have a gamma p.d.f. a priori

pθ(θ) = Ga(θ;α,β) =
βα

Γ(α)
θα−1 exp(−βθ)

for some parameters α,β > 0. It follows that the posterior distribution of θ given the observations
y1, . . . , yn takes the form

pθ|y1:n
(θ | y1, . . . , yn) ∝ py1:n|θ(y1, . . . , yn | θ)pθ(θ)

∝ θα+nȳn−1 exp(−(β + n)θ),

with ȳn = n−1
�n

i=1 yi. We can recognise in this last expression that the posterior distribution takes
the same form as a gamma distribution with parameters α� = α+ nȳn and β� = β + n. It can be easily
verified that these posterior parameters are still positive scalars. Since pθ|y1:n

(· | ·) integrates to 1 by
definition, it follows that

pθ|y1:n
(θ | y1, . . . , yn) =

β�α�

Γ(α�)
θα

�−1 exp(−β�θ),

so that the class of priors P = {Ga(· ;α,β) : α > 0,β > 0} is conjugate for the class of likelihoods
F = {θ �→ Po(· ; θ)}.

1.3 A closer look at the normal distribution

The normal distribution plays a central role in Statistics and Probability since it is a natural choice
for a distribution of errors. In particular, if we perform a random experiment y to measure a quantity
of interest θ and if the measurement error can be expressed as the sum of a large quantity of small
deviations, then the distribution of the error can often be assumed normally distributed.1

1as a consequence of the central limit theorem
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1.3.1 Unknown mean and known variance

In this situation, it holds that

py|θ(y | θ) = N(y; θ,σ2)

=
1√
2πσ2

exp
�
− 1

2σ2
(y − θ)2

�

where the parameter σ, referred to as the standard deviation is assumed to be known. Another parametri-
sation of the normal distribution is based on the precision τ = 1/σ2, that is

N(y; θ, τ−1) =

√
τ√
2π

exp
�
− τ

2
(y − θ)2

�

Similarly, if we have some prior knowledge about θ which can be informally expressed as “the param-
eter should be more or less µ0 ∈ R with no preference for lower or higher values”, then we can choose
the prior distribution

pθ(θ) = N(θ;µ0,σ
2
0)

where the standard deviation σ0 quantifies the uncertainty.

Posterior distribution Introducing τ0 = 1/σ2
0 as the prior precision, we want to gather the terms

that depend on θ in the expression of pθ|y(· | y) as follows

pθ|y(θ | y) ∝ exp
�
− τ

2
(y − θ)2 − τ0

2
(θ − µ0)

2
�

= exp
�
− 1

2

�
(τ + τ0)θ

2 +−2(τy + τ0µ0)θ + τy2 + τ0µ
2
0

��

= exp
�
− 1

2

�
(τ + τ0)

�
θ2 +−2

τy + τ0µ0

τ + τ0
θ +

(τy + τ0µ0)
2

(τ + τ0)2

�
+R(y,µ0, τ0)

��

= exp
�
− (τ + τ0)

2

�
θ − τy + τ0µ0

τ + τ0

�2�
exp

�
− 1

2
R(y,µ0, τ0)

�

where R(y,µ0, τ0) is a remainder which does not depend on θ. We find that the posterior distribution
pθ|y(· | y) is equal to N(· ;µ1, τ

−1
1 ) with

µ1 =
τy + τ0µ0

τ0 + τ
and τ1 = τ0 + τ .

Coming back to standard deviations, we have

µ1 =
σ2
0y + σ2µ0

σ2
0 + σ2

and σ2
1 =

σ2
0σ

2

σ2
0 + σ2

.

It appears that the larger σ0 is compared to σ the more importance will the observation have in the
posterior mean µ1, or simply put, that µ1 is a weighted average between y and µ0. The posterior mean
can also be expressed as

µ1 = µ0 +
σ2
0

σ2
0 + σ2

(y − µ0)

where the “update” of the prior mean by the observation is made more apparent. This expression will
be important in more general cases as will become clear later on.

Predictive distribution If we conduct another random experiment y� independently and with the
same characteristics, that is such that y� is conditionally independent of y given θ and such that
py�|θ(· | θ) = py|θ(· | θ), and if we try to predict its outcome y�, we obtain the predictive distribution

py�|y(y
� | y) =

�
py�|θ,y(y

� | θ, y)pθ|y(θ | y) dθ

=

�
py�|θ(y

� | θ)pθ|y(θ | y) dθ

∝
�

exp
�
− 1

2σ2
(y� − θ)2 − 1

2σ2
1

(θ − µ1)
2
�
dθ.
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Instead of making an explicit computation of the integral, we can use the facts that E(y� |θ = θ) = θ
and var(y� |θ = θ) = σ2 to deduce the mean and variance of the predictive distribution py�|y(· | y) as

E(y� |y = y) = E(E(y� |θ) |y = y) = E(θ |y = y) = µ1

and

var(y� |y = y) = E(var(y� |θ) |y = y) + var(E(y� |θ) |y = y)

= E(σ2 |y = y) + var(θ |y = y)

= σ2 + σ2
1

However, this does not show that the predictive distribution is normal! Yet, this can help us for the
calculation of the corresponding probability distribution. In particular, following the same approach as
with the posterior distribution pθ|y(· | ·) above, we obtain a remainder R(y�,µ1, τ1) of the same form as
before with τ1 = 1/σ2

1 , and it follows that

R(y�,µ1, τ1) = τy�2 + τ1µ
2
1 −

(τy� + τ1µ1)
2

(τ + τ1)

=
y�2

σ2
+

µ2
1

σ2
1

− (σ2
1y

� + σ2µ1)
2

σ2σ2
1(σ

2 + σ2
1)

=
1

σ2 + σ2
1

�
(σ2 + σ2

1)
σ2
1y

�2 + σ2µ2
1

σ2σ2
1

− σ4
1y

�2 + 2σ2σ2
1y

�µ1 + σ4µ2
1

σ2σ2
1

�

=
1

σ2 + σ2
1

�
y�2 + µ2

1 − 2y�µ1

�
,

and it holds that

py�|y(y
� | y) ∝ exp

�
− 1

2(σ2 + σ2
1)
(y� − µ1)

2
�
,

from which we conclude that py�|y(· | y) is indeed normal for any observation y.

Multiple observations Consider the case where n observations y1, . . . , yn resulting from the sequence
of conditionally independent random experiments y1:n = (y1, . . . ,yn) have been received. To determine
the posterior distribution pθ|y1:n

(· | y1, . . . , yn), it would be possible to iterate n times the calculations
made for the posterior distribution given a single observation. However, we can also remark that

py1:n|θ(y1, . . . , yn | θ) =
n�

i=1

pyi|θ(yi | θ) =
n�

i=1

N(yi; θ,σ
2)

=
1

(2πσ2)n/2
exp

�
− 1

2σ2

n�

i=1

(yi − θ)2
�

=
1

(2πσ2)n/2
exp

�
− 1

2σ2

n�

i=1

�
(yi − ȳn)− (θ − ȳn)

�2�

where ȳn = n−1
�n

i=1 yi. This expression can then be simplified by expanding the square and noticing
that

�n
i=1(yi − ȳn) = 0, which yields

py1:n|θ(y1, . . . , yn | θ) =
1

(2πσ2)n/2
exp

�
− 1

2σ2

n�

i=1

(yi − ȳn)
2 − n

2σ2
(θ − ȳn)

2
�

∝ exp
�
− n

2σ2
(θ − ȳn)

2
�
.

Since multiplicative coefficients that are constant in θ have no effect on the posterior distribution when
using Bayes’ rule, we can replace py1:n|θ(· | θ) by the conditional distribution

pȳn|θ(ȳn | θ) = N(ȳn; θ,σ
2/n),
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Figure 1.3: Normal sampling distribution with unknown mean.

where ȳn is the random experiment consisting of taking the average of y1, . . . ,yn. The fact that the
posterior distribution only depends on the observations via the average ȳn shows that ȳn is a sufficient
statistic. The posterior mean and variance corresponding to this likelihood are respectively

µn =
nσ2

0

nσ2
0 + σ2

ȳn +
σ2

nσ2
0 + σ2

µ0 and σ2
n =

σ2
0σ

2

nσ2
0 + σ2

This result leads to some important conclusions: 1. the mean is more and more influenced by ȳn when n
increases and 2. the variance modelling our uncertainty about the true value of the parameter is inversely
proportional to n, in particular, the variance goes to 0 when n tends to infinity. An illustration of the
prior and posterior distributions for multiple observations is given in Figure 1.3.

Following the same type of calculations as before, we also find that

py1:n
(y1, . . . , yn) ∝ exp

�
− n

2(σ2 + nσ2
0)
(ȳn − µ0)

2
�
.

1.3.2 Known mean and unknown variance

In this situation, we consider that the parameter is equal to the precision of the observations, that is

py|θ(y | θ) = N(y;µ, θ−1) ∝
√
θ exp

�
− θ

2
(y − µ)2

�

for a given mean µ. As before, we would like to have a conjugate prior for this likelihood; however,
assuming that θ is normally distributed is not going to work since we clearly want to avoid non-positive
values. To make an educated guess about the type of prior distribution we are looking for, it is useful to
consider again the case of n observations y1, . . . , yn. Indeed, we find that

py1:n|θ(y1, . . . , yn | θ) =
θn/2

(2π)n/2
exp

�
− θ

2

n�

i=1

(yi − µ)2
�

∝ θn/2 exp
�
− nθ

2
v
�

with v = n−1
�n

i=1(yi − µ)2 the sufficient statistic for this model. This suggests the use of a gamma
distribution as a prior, that is

pθ(θ) = Ga(θ;α,β) ∝ θα−1 exp(−βθ)

for some parameters α > 0 and β > 0. This choice of prior also addresses our concern about positivity
of the parameter. It follows easily that the posterior distribution is gamma with parameters

αn = α+
n

2
and βn = β +

nv

2
.
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Figure 1.4: Normal sampling distribution with unknown variance.

Note that the prior mean E(θ) = α/β and the prior variance var(θ) = α/β2 induced by the gamma dis-
tribution can be used to set the values of α and β. An illustration of the prior and posterior distributions
for multiple observations is given in Figure 1.4.

1.3.3 Unknown mean and variance

In the case where both the mean and variance are unknown, the random variable θ has two components:
the random variable µ describing the unknown mean and the random variable τ describing the unknown
precision, that is θ is the random vector (µ, τ )� with ·� denoting the transposition. Proceeding as before,
we write the likelihood and study its form as a function of the unknown mean and variance

py1:n|µ,τ (y1, . . . , yn |µ, τ) =
τn/2

(2π)n/2
exp

�
− τ

2

n�

i=1

(yi − µ)2
�

(1.15a)

=
τn/2

(2π)n/2
exp

�
− τ

2

n�

i=1

(yi − ȳn)
2 − nτ

2
(µ− ȳn)

2
�

(1.15b)

=
τn/2

(2π)n/2
exp

�
− nτ

2
(µ− ȳn)

2
�
exp

�
− nv̂

2
τ
�

(1.15c)

with v̂ = n−1
�n

i=1(yi − ȳn)
2 the sample variance, which suggests a normal prior for µ | τ and a gamma

prior for τ . In particular, we set

pµ|τ (µ | τ) = N
�
µ;µ0, (kτ)

−1
�

with µ0 the prior mean and k ∈ N, and

pτ (τ) = Ga(τ ;α,β),

for some α > 0 and β > 0. The parameter k can be interpreted as the number of observations that
the prior distribution is equivalent to, in terms of information. This prior yields the following posterior
distribution

pµ,τ |y1:n
(µ, τ | y1:n) =

py1:n|µ,τ (y1:n |µ, τ)pµ|τ (µ | τ)pτ (τ)�
py1:n|µ,τ (y1:n |µ�, τ �)pµ|τ (µ� | τ �)pτ (τ) dµ� dτ �

=
py1:n|µ,τ (y1:n |µ, τ)pµ|τ (µ | τ)�

py1:n|µ,τ (y1:n |µ�, τ)pµ|τ (µ� | τ) dµ�

�
py1:n|µ,τ (y1:n |µ�, τ)pµ|τ (µ� | τ) dµ�pτ (τ)�

py1:n|µ,τ (y1:n |µ�, τ �)pµ|τ (µ� | τ �)pτ (τ) dµ� dτ �
,
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where we have made appear the (conditional) posterior distribution pµ|τ ,y1:n
(· | y1:n, τ) in the first term

and the posterior distribution pτ |y1:n
(· | y1:n) in the second term. It holds that

py1:n|µ,τ (y1:n |µ, τ)pµ|τ (µ | τ) = τn/2

(2π)n/2
exp

�
− nτ

2
(µ− ȳn)

2
�
exp

�
− nv̂

2
τ
�
N
�
µ;µ0, (kτ)

−1
�

(1.17a)

∝ τn/2 exp
�
− nv̂

2
τ
�
exp

�
− nkτ

2(n+ k)
(µ0 − ȳn)

2
�
N
�
µ;µn, ((k + n)τ)−1

�
,

(1.17b)

where the second line follows from the calculations made in Section 1.3.1 for the posterior and predictive
distributions and where µn = (kµ0 + nȳn)/(k + n) as before. The (conditional) posterior distribution of
µ given τ = τ is then found to be

pµ|τ ,y1:n
(µ | y1:n, τ) = N

�
µ;µn, ((k + n)τ)−1

�
,

since all the other terms do not depend on µ. The integral of (1.17) with respect to µ acts as a likelihood
for the precision τ , the expression of this integral follows as

�
py1:n|µ,τ (y1:n |µ�, τ)pµ|τ (µ

� | τ) dµ� ∝ τn/2 exp
�
− nv̂

2
τ
�
exp

�
− nkτ

2(n+ k)
(µ0 − ȳn)

2
�
.

so that the posterior distribution of τ is

pτ |y1:n
(τ | y1:n) ∝ τn/2 exp

�
− nv̂

2
τ
�
exp

�
− nkτ

2(n+ k)
(µ0 − ȳn)

2
�
Ga(τ ;α,β)

∝ τα+n/2−1 exp

�
− τ

�
β +

nv̂

2
+

nk

2(n+ k)
(µ0 − ȳn)

2
��

so that the posterior distribution of τ is also gamma, with parameters

αn = α+
n

2
and βn = β +

nv̂

2
+

nk

2(n+ k)
(µ0 − ȳn)

2.

We can deduce from these results that

E(µ |y1:n = y1:n) = E
�
E(µ | τ ,y1:n = y1:n) |y1:n = y1:n

�

= µn

and that

var(µ |y1:n = y1:n) = E
�
var(µ | τ ,y1:n = y1:n) |y1:n = y1:n

�

= E
�
((k + n)τ )−1 |y1:n = y1:n

�

=
βn

(k + n)(αn − 1)
,

where we have used the expression of the mean αn/(βn − 1) of an inverse-gamma distribution with
parameters αn and βn. It follows that E(µ |y1:n = y1:n) tends to ȳn as n tends to infinity and the
posterior variance var(µ |y1:n = y1:n) tends to 0. Although we have computed the posterior mean and
variance of the random variable µ, this does not imply that its distribution is normal. We can find the
form of this distribution by computing the following integral directly:

pµ|y1:n
(µ | y1, . . . , yn) ∝

� ∞

0

ταn+
1
2−1 exp

�
− τ

�
βn +

k + n

2
(µ− µn)

2
��

dτ .

This expression can be recognised as yet another gamma distribution with some new parameter α� > 0
and β� > 0 so we know it integrates to Γ(α�)β�−α�

. Since only β� depends on µ, it follows that

pµ|y1:n
(µ | y1, . . . , yn) ∝

�
βn +

k + n

2
(µ− µn)

2
�−αn− 1

2

∝
�
1 +

1

2αn

(k + n)αn

βn
(µ− µn)

2
�− 2αn+1

2

,

which is a generalised Student’s t distribution with location parameter µn, scale parameter βn/((k+n)αn)
and 2αn degrees of freedom.
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