
Chapter 2

Dynamic linear model

In the previous chapter, we have seen how to use Bayesian inference to learn about an unknown quantity
of interest from a sequence of conditionally-independent observations. Yet, in practical situations, it
is common that the quantity of interest evolves in time according to a model which can itself contain
random effects. The objective in this chapter is to model these aspects in a general way and to solve the
corresponding Bayesian inference problem in the Gaussian case.

2.1 State space model

Instead of a single random variable θ, we now consider a sequence of random variables (θk)k≥0 in Θ ⊆ Rd

for some d > 0. The integer k is interpreted as a time index. The time step Δ between two consecutive
time indices, expressed for instance in seconds, is assumed to be constant. At every time index k ≥ 0,
an observation yk ∈ Y ⊆ Rd�

, d� > 0, is received and we assume that the underlying random variable yk

is conditionally-independent of yl given θk for any integer l �= k.

2.1.1 Markov chain and state space model

The general objective is to determine the posterior distribution of θk or θ0:k given some observations
y0, . . . , yk. Considering the assumption on the observations, it would not be meaningful to assume that
θk is independent of θl for any l �= k since the problem would collapse to a collection of static Bayesian
inference problems in this case. Instead, we consider one of the simplest form of dependence as defined
below.

Definition 2.1 (Markov chain). The sequence of random variables (θk)k≥0 forms a (discrete-time)
Markov chain if

pθk|θ0:k−1
(θ | θ0, . . . , θk−1) = pθk|θk−1

(θ | θk−1) (2.1)

for any θ0, . . . , θk−1 ∈ Θ and any k > 0.

Equation (2.1) is often referred to as the Markov property. We therefore assume that (θk)k≥0 is a
Markov chain and we refer to (θk,yk)k≥0 as a state space model or a hidden Markov model. It is common
to describe the evolution of the quantity of interest and the generation of observations via a system of
equations of the form

θk = fk(θk−1,uk)

yk = hk(θk,vk)

with fk and hk the state and observation functions respectively and with (uk)k>0 and (vk)k≥0 sequences
of zero-mean independent random variables.

2.1.2 Smoothing and filtering distributions

We introduce the following notations for the sake of simplicity

πk(θ) = pθk
(θ), qk(θ | θ�) = pθk|θk−1

(θ | θ�), �k(y | θ) = pyk|θk
(y | θ).
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With these notations and the considered assumptions, the joint distribution of θ0, . . . ,θn given the
observations y0, . . . , yn, called the smoothing distribution at time step n, can be simply expressed as

pθ0:n|y0:n
(θ0, . . . , θn | y0, . . . , yn) ∝ π0(θ0)�0(y0 | θ0)

n�

k=1

qk(θk | θk−1)�k(yk | θk).

This expression can be easily verified by induction. It is generally difficult to determine the smoothing
distribution since the dimension of the problem can be arbitrarily large. Also, in many cases, the interest
is mainly in the distribution of the quantity of interest at the current time step, that is in

pθn|y0:n
(θn | y0, . . . , yn) =

�
pθ0:n|y0:n

(θ0, . . . , θn | y0, . . . , yn) dθ0:n−1. (2.3)

Given the importance of this distribution, usually referred to as the filtering distribution, we also intro-
duce a special notation for it, that is

πk|n(θ | y0, . . . , yn) = pθk|y0:n
(θ | y0, . . . , yn), k,n ≥ 0.

When looking at (2.3), it seems even more difficult to determine the filtering distribution when compared
to the smoothing distribution since it requires an extra marginalisation step; however, it is easy to
show that the filtering distribution can instead be computed recursively: assuming that the filtering
distribution at time step n − 1 is available, we can deduce an expression of the filtering distribution at
time step n as follows

(predictive state distribution) the distribution of θn given observations up to time step n− 1 is

πn|n−1(θ | y0, . . . , yn−1) =

�
qn(θ | θ�)πn−1|n−1(θ

� | y0, . . . , yn−1) dθ
�

(posterior distribution) the distribution of θn given observations up to time step n is

πn|n(θ | y0, . . . , yn) =
�n(yn | θ)πn|n−1(θ | y0, . . . , yn−1)�

�n(yn | θ�)πn|n−1(θ� | y0, . . . , yn−1) dθ�
(2.4)

These equations are fundamental to address the (discrete-time) filtering problem. Note that the de-
nominator in the right-hand side of (2.4) is the predictive distribution pyn|y0:n−1

(· | y0, . . . , yn−1) of the
observation, or forecasting distribution, at time step n evaluated at yn.

2.2 Dynamic linear model

The filtering problem can be significantly simplified by considering the case where the state and obser-
vation functions take the form

fk(θ,u) = Fkθ + u and hk(θ, v) = Hkθ + v

where Fk is a d× d matrix and Hk is a d� × d matrix, respectively called the transition matrix and the
observation matrix. The state and observation equations become

θk = Fkθk−1 + uk

yk = Hkθk + vk

and this case will be referred to as a dynamic linear model (DLM). We will often consider the case where
Fk = F , Hk = H, puk

(·) = pu(·) and pvk
(·) = pv(·) for any k ≥ 0, which will be called a constant DLM.

An example of DLM is given in Figure 2.1 for a state of the form θk = (xk, ẋk)
� with xk and ẋk the

position and velocity of an object at time step k. Only the position is observed at each time step, so
that the velocity is hidden. The specific model considered here will be detailed in Section 2.2.3.
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Figure 2.1: The two components and observations of a 2-dimensional DLM.
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2.2.1 Mean and variance of the predictive distributions

Since the transition noise uk and the observation noise vk are assumed to have a mean equal to zero,
it is easy to compute the mean and variance corresponding to the predictive state distribution at time
step k as

mk
.
= E(θk |y0:k−1 = y0:k−1)

= E(Fkθk−1 + uk |y0:k−1 = y0:k−1)

= FkE(θk−1 |y0:k−1 = y0:k−1)

= Fkm̂k−1

with m̂k−1
.
= E(θk−1 |y0:k−1 = y0:k−1) and

Pk
.
= var(θk |y0:k−1 = y0:k−1)

= E((θk −mk)(θk −mk)
� |y0:k−1 = y0:k−1)

= E
�
(Fkθk−1 − Fkm̂k−1)(Fkθk−1 − Fkm̂k−1)

� |y0:k−1 = y0:k−1

�
+ var(uk)

= Fk var(θk−1 |y0:k−1 = y0:k−1)F
�
k + var(uk)

= FkP̂k−1F
�
k + var(uk),

with P̂k−1
.
= var(θk−1 |y0:k−1 = y0:k−1). Following the same approach, we can also compute the mean

and variance of the forecasting distribution pyk|y0:k−1
(· | ·) as

E(yk |y0:k−1 = y0:k−1) = Hkmk

var(yk |y0:k−1 = y0:k−1) = HkPkH
�
k + var(vk).

These calculations reveal that DLMs are well-suited to Gaussian assumptions, as will be demonstrated
in the next section.

Note that the mean and variance of the state and observation can be predicted several steps ahead
using the same approach. For instance

E(θn |y0:k−1 = y0:k−1) = FnFn−1 . . . FkE(θk−1 |y0:k−1 = y0:k−1)

for any n ≥ k, and

E(yn |y0:k−1 = y0:k−1) = HnFnFn−1 . . . FkE(θk−1 |y0:k−1 = y0:k−1).

The corresponding expressions for the variance are equally easy to derive but take a more complex form.

2.2.2 Kalman filter

In many applications, the distribution of the transition noise uk and of the observation noise vk are
adequately modelled as (multivariate) Gaussian, that is

puk
(u) = N(u; 0,Uk) and pvk

(v) = N(v; 0,Vk)

for some (positive-definite) matrices Uk and Vk and for any k ≥ 0. If the initial distribution π0(·) is
also Gaussian with mean m0 and variance P0, then the corresponding model is referred to as a Gaussian
DLM.

Theorem 2.1 (Kalman filter). Consider a Gaussian DLM, the predictive distribution at any time step
k > 0 is also Gaussian and verifies πk|k−1(θ | y0, . . . , yk−1) = N(θ;mk,Pk) with

�
mk = Fkm̂k−1

Pk = FkP̂k−1F
�
k + Uk,

(prediction)

and the posterior distribution at any time step k ≥ 0 is also Gaussian and verifies πk|k(θ | y0, . . . , yk) =
N(θ; m̂k, P̂k) with �

m̂k = mk +Kkzk

P̂k = (Id −KkHk)Pk

(update)
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where Id is the identity matrix of size d and where

zk = yk −Hkmk (innovation)

Kk = PkH
�
kS

−1
k (optimal Kalman gain)

Sk = HkPkH
�
k + Vk (covariance of the innovation)

The Kalman filter defines a recursive algorithm to compute the mean and variance of the predictive
and filtering distributions at different time steps. We have already proved the formula for the mean and
variance of the predictive distribution in Section 2.2.1, however, the corresponding proof for the posterior
distribution is more complex and will be dealt with later.

In R, the Kalman filter is available as the function dlmFilter in the package dlm.

2.2.3 A concrete example

We consider the scenario where the state of an object moving on a line must be inferred from the noisy
observations given by a sensor. The random variable θk models the state of the object at time step k,
which is assumed to be of the form θk = (xk, ẋk)

� ∈ Θ = R2, with xk the position of the object and
ẋk its velocity. We consider a constant Gaussian DLM (that is Uk = U and Vk = V for any k ≥ 0) and
assume that the object moves according to a nearly-constant velocity model described by

F =

�
1 Δ
0 1

�
and U = σ�2

�
Δ4/4 Δ3/2
Δ3/2 Δ2

�

for some σ� > 0 , where Δ is the time step. The form of the matrix U will be justified in Chapter 3.
Additionally, we assume that the sensor simply observes the position, that is

H =
�
1 0

�
and V = σ2

for some σ > 0. An example of the application of this model on simulated data is shown in Figure 2.2.

2.2.4 Proof of the Kalman-filter update

There exist several ways to prove the update formula of the Kalman filter. The most obvious one is
to make the explicit calculations of the multiplication and integration between the Gaussian probability
distributions in Bayes’ rule. Although this is doable by using some usual algebraic manipulations, it is
more interesting to use statistical arguments to recover the desired result.

For this purpose, and dropping the time steps in the notation where there is no ambiguity, we
will first assume that our updated estimate θ̂ is a weighted average between the predicted estimate
θ̆

.
= E(θk |y0:k−1) and the observation yk, that is

θ̂
.
= K �θ̆ +Kyk

with K a d× d� matrix and K � a d× d matrix to be determined.

Unbiased estimator It is easy to verify that the prediction step preserves unbiasedness, so assuming
that our predicted estimate θ̆ is unbiased, that is E(θ̆) = E(θk) holds, we want to make sure that θ̂ is
also unbiased:

E(θ̂) = E(K �θ̆ +Kyk)

= E(K �θ̆ +KHθk +Kvk)

= K �E(θ̆) +KHE(θ̆)

= (K � +KH)E(θ̆)

which indicates that we need to choose K � = Id − KH to ensure that the update step also preserves
unbiasedness. This yields

θ̂ = (Id −KH)θ̆ +Kyk

= θ̆ +K(yk −Hθ̆).
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(a) Observations, true and estimated position as well as predicted and posterior distribution
at a given time step.

(b) True and estimated velocity as well as predicted and posterior distribution at a given
time step.

Figure 2.2: Kalman filtering results for a nearly-constant velocity model.
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We can therefore verify the update equation for the mean by taking the expectation E(· |y0:k = y0:k). A
formula for the covariance can also be deduced as follows

var(θ̂ − θk |y0:k) = (Id −KH) var(θ̆ − θk |y0:k−1)(Id −KH)� +K var(vk)K
�.

This does not lead directly to the update equation for the covariance and yields instead

P̂ = (Id −KH)P (Id −KH)� +KVK�. (2.12)

This formula is actually valid for any gain K, including the above-defined optimal Kalman gain. It
remains to show in which sense this gain is optimal.

Optimal Kalman gain We want our estimator θ̂ to lead to a mean-square error that is as small as
possible and K is the only design matrix left in (2.12). Thus, we choose as a gain

K∗ = argmin
K

E(�θ̂ − θk�2 |y0:k)

where � · � is the Euclidean norm. It holds that

E(�θ̂ − θk�2 |y0:k) = tr var(θ̂ − θk |y0:k)

with tr the trace operator, so we can minimise the trace of the variance instead. A useful result when
optimising a trace is

∂

∂A
tr(ABA�) = 2AB

which holds for any matrix A and any symmetric matrix B of appropriate dimensions. To find the
minimum of the trace of P̂ , we differentiate the trace of its expression given in (2.12) with respect to K
as follows

∂

∂K
tr(P̂ ) =

∂

∂K
tr((Id −KH)P (Id −KH)�) +

∂

∂K
tr(KVK�)

= −2(Id −KH)PH� + 2KV ,

so that the minimum is found at
K = PH�(HPH� + V )−1,

which is indeed the expression of the Kalman gain in Theorem 2.1.

2.2.5 Model checking

When dealing with real data, one way to verify that the considered model is appropriate is to look at
the distribution of the innovation. The innovation zk introduced in Theorem 2.1 is not random because
the observation yk at time step k has been assumed fixed. In general, if we consider the random variable
yk instead, the innovation also becomes a random variable zk defined as

zk = yk − E(yk|y0:k−1) = yk −Hkθ̆k.

The conditional distribution of zk given y0:k−1 = y0:k−1 follows easily from the one of yk as N(·; 0,Sk).
It can also be proved that the innovation process (zk)k≥0 is uncorrelated, that is cov(zk−δ, zk) = 0 for
any δ > 0.

One can therefore verify the suitability of the model by checking that the innovation zk is indeed
distributed according to N(·; 0,Sk) using, e.g., Q-Q plots, and that the innovation process is uncorrelated
using, e.g., autocorrelation functions.

2.3 Unknown parameters

It is often the case in practice that at least some of the parameters of the model are now fully known
in advance and must be estimated in parallel. The most usual situation is where U and/or V have a
known form but have unknown coefficients like σ or σ� in Section 2.2.3. More generally, we denote ψ
the unknown parameter of the model in a given space Ψ, which could affect any or all of the matrices
Fk, Hk, Uk or Vk. We consider two ways of solving this parameter estimation problem: the maximum
likelihood estimation (MLE) approach and the Bayesian approach.
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2.3.1 Maximum likelihood estimation

Consider the likelihood Ln(ψ; y0, . . . , yn)
.
= pψy0:n

(y0, . . . , yn) at the value ψ of the unknown parameter
given the observations y0, . . . , yn. In the context of MLE, the logarithm of the likelihood is usually
considered as

logLn(ψ; y0, . . . , yn) = log pψy0:n
(y0, . . . , yn)

= log pψy0
(y0) +

n�

k=1

log pψyk|y0:k−1
(yk | y0, . . . , yk−1).

In the case of a Gaussian DLM, this expression simplifies to

logLn(ψ; y0, . . . , yn) = −1

2

n�

k=0

log |P̃ψ
k |− 1

2

n�

k=0

(yk − m̃ψ
k )

�(P̃ψ
k )−1(yk − m̃ψ

k ) + c,

with m̃ψ
k and P̃ψ

k the mean and variance of the predicted observation at time step k when the unknown

parameter is ψ ∈ Ψ, and with c a constant. The MLE ψ̂n at time step n can then be expressed as

ψ̂n = argmax
ψ∈Ψ

logLn(ψ; y0, . . . , yn).

Under various assumptions, the MLE can be shown to be consistent, that is, denoting ψ∗ the true value
of the parameter, it holds that

ψ̂n
n→∞−−−−→ ψ∗.

Note that formally, this is a form of convergence in probability. Additionally, it can be proved that the
MLE is asymptotically normal, that is

√
n(ψ̂n − ψ∗)

n→∞−−−−→ N(0, I(ψ∗)−1)

where the convergence is in distribution and where I(ψ) is the Fisher information matrix such that

[I(ψ)]i,j = lim
n→∞

1

n+ 1
Eψ

�� ∂

∂ψi
log pψy0:n

(y0:n)
�� ∂

∂ψj
log pψy0:n

(y0:n)
��

with ψ defined as the column vector (ψ1, . . . ,ψN )�. If ψ is a scalar then the Fisher information is also a
scalar defined as

I(ψ) = lim
n→∞

1

n+ 1
Eψ

�� ∂

∂ψ
log pψy0:n

(y0:n)
�2

�
.

One important limitation with the MLE approach is that the uncertainty associated with ψ̂n is not
directly represented and hence, the Kalman filter will use this value of the parameter as the true one.

In order to solve the optimisation problem associated with the MLE, one can use existing numerical
optimisation routines such as optim in R. There is also a function dlmMLE that is more specific for the
type of problems presented in this section; this function is also part of the dlm package in R.

2.3.2 Bayesian approach

As usual in the context of Bayesian inference, we now consider that the unknown parameter is a random
variable ψ and we define some prior distribution pψ(·) on Ψ in order to model the available information
about ψ. We assume that the conditional distribution pθk|θ0:k−1,ψ(· | ·) has the Markov property, that is

pθk|θ0:k−1,ψ(θk | θ0, . . . , θk−1,ψ) = pθk|θk−1,ψ(θk | θk−1,ψ).

In a similar way, we assume that the observation yk is conditionally independent of yl given θ and ψ
for any l �= k. It follows that the joint distribution of the states, the observations and the parameter is

pθ0:n,y0:n,ψ(θ0, . . . , θn, y0, . . . , yn,ψ) = pψ(ψ)π̄0(θ0 |ψ)�̄0(y0 | θ0,ψ)
n�

k=1

q̄k(θk | θk−1,ψ)�̄k(yk | θk,ψ),
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where π̄0(· |ψ), �̄k(· | θk,ψ) and q̄k(· | θk−1,ψ) stand respectively for the distributions pθ0|ψ(· |ψ), pyk|θk,ψ(· | θk,ψ)
and pθk|θk−1,ψ(· | θk−1,ψ). The filtering distribution can then be recovered by integrating out the pa-
rameter as

πk|n(θk | y0, . . . , yn) =
�

pθk,ψ|y0:n
(θk,ψ | y0, . . . , yn) dψ

=

�
pθk|ψ,y0:n

(θk |ψ, y0, . . . , yn)pψ|y0:n
(ψ | y0, . . . , yn) dψ.

The first term in the integral is given by the Kalman filter for a fixed ψ, however, it is not usually the
case that this integral can be computed analytically (although an example where it is will be detailed
in the next section). One then has to resort to stochastic simulation algorithms such as Markov chain
Monte Carlo (MCMC) or sequential Monte Carlo (SMC).

2.3.3 Extension of the Kalman filter to unknown variance

It is often the case in practice that the variance of the evolution noise and/or of the observation noise are
not known a priori and must be learned alongside the parameter of interest. For the sake of simplicity,
we assume that the form of the matrices Uk and Vk is known except for a common coefficient that does
not depend on time, that is, for any k ≥ 0,

Uk = σ2U �
k and Vk = σ2V �

k

for some σ > 0 and some matrices U �
k and V �

k of appropriate dimensions. We also assume that the prior
variance is of the form P0 = σ2P �

0. The corresponding model can then be expressed via the evolution
and observation equations

θk = Fkθk−1 + σu�
k

yk = Hkθk + σv�
k

with u�
k ∼ N(· ; 0,U �

k) and v�
k ∼ N(· ; 0,V �

k). To represent the fact that σ is unknown, we introduce a
random variable τ corresponding to the precision induced by σ. The prior distribution of τ is defined
as a gamma distribution with parameters α0 and β0. To sum up, we have a priori

τ ∼ Ga(· ;α0,β0) and θ0 | τ ∼ N(· ;m0, τ
−1P �

0).

We want to show that if the posterior distributions of τ and θ | τ take this form at time step k− 1, then
they also take this form at time step k. We therefore assume that

τ |y0:k−1 ∼ Ga(· ;αk−1,βk−1) and θk−1 | τ ,y0:k−1 ∼ N(· ; m̂k−1, τ
−1P̂ �

k−1)

for some parameters αk−1 > 0, βk−1 > 0, m̂k−1 and P �
k−1. Since the prediction step only applies to

θk−1, it has no influence on αk−1 and βk−1 and we simply find that

mk = Fkm̂k−1

P �
k = FkP̂

�
k−1F

�
k + U �

k.

Note that assuming that the prior variance is τ−1P �
0 made the prediction equation for the variance

simpler by enabling the factorisation of the precision. Similarly, the forecasting distribution at time step
k given τ is easily deduced to be

pyk|τ ,y0:k−1
(yk | τ , y0, . . . , yk−1) = N

�
yk;Hkmk, τ

−1S�
k

�

with S�
k = HkP

�
kH

�
k + V �

k. Applying the Kalman update equation yields

m̂k = mk +Kkzk

P̂ �
k = (Id −KkHk)P

�
k
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where the innovation and the Kalman gain are expressed as

zk = yk −Hkmk

Kk = PkH
�
kS

−1
k = (τ−1P �

k)H
�
k (τ

−1S�
k)

−1 = P �
kH

�
kS

�−1
k .

At the moment, we have determined the posterior distribution of θk given τ . However, it is Bayes’ rule
for the joint (θk, τ ) that we need to obtain. Reusing the notations of Section 2.3.2 with τ instead of ψ,
these two distributions can be related as follows:

pθk,τ |y0:k
(θk, τ | y0:k) =

�̄k(yk | θk, τ)pθk,τ |y0:k−1
(θk, τ | y0:k−1)

pyk|y0:k−1
(yk | y0:k−1)

=
�̄k(yk | θk, τ)pθk|τ ,y0:k−1

(θk | τ , y0:k−1)

pyk|τ ,y0:k−1
(yk | τ , y0:k−1)

× pyk|τ ,y0:k−1
(yk | τ , y0:k−1)pτ |y0:k−1

(τ | y0:k−1)

pyk|y0:k−1
(yk | y0:k−1)

The first term indeed corresponds to the case of the Kalman filter update for a fixed τ . The distribu-
tions in the numerator of the second term are the marginal likelihood pyk|τ ,y0:k−1

(· | ·) and the posterior
distribution of τ at time step k − 1, which can be combined as

pyk|τ ,y0:k−1
(yk | τ , y0:k−1)Ga(τ ;αk−1,βk−1) ∝ τd

�/2 exp
�
− τ

2
z�kS

�−1
k zk

�
ταk−1−1 exp(−βk−1τ)

so that

αk = αk−1 +
d�

2
and βk = βk−1 +

1

2
z�kS

�−1
k zk.

Noting that βk is the only term depending on yk, one can also compute the marginal likelihood
pyk|y0:k−1

(yk | y0:k−1) by integration as follows

pyk|y0:k−1
(yk | y0:k−1) =

�
pyk|τ ,y0:k−1

(yk | τ , y0:k−1)Ga(τ ;αk−1,βk−1) dτ

∝
�

ταk−1 exp(−βkτ) dτ ∝ β−αk

k .

Based on the expressions of αk and βk we find

pyk|y0:k−1
(yk | y0:k−1) ∝

�
1 +

1

2αk−1
(yk −Hkmk)

�
�βk−1

αk−1
S�
k

�−1

(yk −Hkmk)

�− 2αk−1+d�
2

which is multivariate t-distribution with 2αk−1 degrees of freedom with location Hkmk and shape matrix
βk−1

αk−1
S�
k. The statistics of such a distribution yield

E(yk |y0:k−1 = y0:k−1) = Hkmk, if 2αk−1 > 1

var(yk |y0:k−1 = y0:k−1) =
βk−1

αk−1 − 1
S�
k, if 2αk−1 > 2,

the mean and the variance being undefined otherwise.
Since τ follows a gamma distribution, the random variance τ−1 follows an inverse-gamma distribution

with the same parameters, that is

τ−1 |y0:k = y0:k ∼ Inv-Ga(·;αk,βk)

with

Inv-Ga(x;αk,βk) =
βαk

k

Γ(αk)
x−αk−1 exp(−βk/x).

The mean of such a random variable is defined only when αk > 1 as βk/(αk − 1) and the variance is
defined only when αk > 2 as β2

k/((αk − 1)2(αk − 2)).
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