Chapter 2

Dynamic linear model

In the previous chapter, we have seen how to use Bayesian inference to learn about an unknown quantity
of interest from a sequence of conditionally-independent observations. Yet, in practical situations, it
is common that the quantity of interest evolves in time according to a model which can itself contain
random effects. The objective in this chapter is to model these aspects in a general way and to solve the
corresponding Bayesian inference problem in the Gaussian case.

2.1 State space model

Instead of a single random variable 8, we now consider a sequence of random variables (6 )x>0 in © C R?
for some d > 0. The integer k is interpreted as a time index. The time step A between two consecutive
time indices, expressed for instance in seconds, is assumed to be constant. At every time index k > 0,
an observation gy € ) C Rd/7 d’ > 0, is received and we assume that the underlying random variable yy,
is conditionally-independent of y; given 6y for any integer [ # k.

2.1.1 Markov chain and state space model

The general objective is to determine the posterior distribution of 8y or 6., given some observations
Yo, - - -, Y. Considering the assumption on the observations, it would not be meaningful to assume that
0y, is independent of 8; for any [ # k since the problem would collapse to a collection of static Bayesian
inference problems in this case. Instead, we consider one of the simplest form of dependence as defined
below.

Definition 2.1 (Markov chain). The sequence of random variables (6j)r>o forms a (discrete-time)
Markov chain if
Peoy160.1—1 (9 | o, .-, 91@*1) = P64 |0r—1 (0 | ekfl) (2'1)

for any 6p,...,0;—1 € © and any k > 0.

Equation (2.1) is often referred to as the Markov property. We therefore assume that (0x)r>0 is a
Markov chain and we refer to (0x, Yi)r>0 as a state space model or a hidden Markov model. It is common
to describe the evolution of the quantity of interest and the generation of observations via a system of
equations of the form

Or = fr(Or—1,ur)
Yr = hi(Or, vi)
with fi, and hy, the state and observation functions respectively and with (ug)r>o and (vg)g>0 sequences

of zero-mean independent random variables.

2.1.2 Smoothing and filtering distributions

We introduce the following notations for the sake of simplicity
Wk(9) :Pek(a), Qk(9|9/) :pek|ok,1(9|9/)7 fk(y|9) :pyk\ek(y|9)-
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With these notations and the considered assumptions, the joint distribution of 8y,...,8, given the
observations o, . . . , Yn, called the smoothing distribution at time step n, can be simply expressed as

n

P60, [youn (005 On [ Y05 -+ yn) o< T0(60)lo(yo | Oo) H (O | O—1)Ci(yk | Ok)-

This expression can be easily verified by induction. It is generally difficult to determine the smoothing
distribution since the dimension of the problem can be arbitrarily large. Also, in many cases, the interest
is mainly in the distribution of the quantity of interest at the current time step, that is in

pgn\ygm (en | Yo, .- 7yn) = /p@o:n\y()m (907 e 7971 | Yo, - - 7yn) deO:nfL (23)

Given the importance of this distribution, usually referred to as the filtering distribution, we also intro-
duce a special notation for it, that is

ﬂ—k|n(9 | Yo, - - - 7yn) = p9k|y0m (0 | Yo, - - - 7yn)7 kvn Z 0.

When looking at (2.3), it seems even more difficult to determine the filtering distribution when compared
to the smoothing distribution since it requires an extra marginalisation step; however, it is easy to
show that the filtering distribution can instead be computed recursively: assuming that the filtering
distribution at time step n — 1 is available, we can deduce an expression of the filtering distribution at
time step n as follows

(predictive state distribution) the distribution of 6,, given observations up to time step n — 1 is
Tnjn—1(0 1905 -+ -, Yn—1) :/qn(ﬂ\ﬂ')ﬂn—un—lw’lyo,---,yn—l)dﬁ’

(posterior distribution) the distribution of 6,, given observations up to time step n is

(yn|9)7rn|n 1(0‘3/07"')1/77.71)
fﬁ yn|9)7rn|n 1(9 |y0a~~-7yn71)d0/

These equations are fundamental to address the (discrete-time) filtering problem. Note that the de-
nominator in the right-hand side of (2.4) is the predictive distribution py, |y..._, (- |%0,.-.,yn—1) of the
observation, or forecasting distribution, at time step n evaluated at y,,.

2.2 Dynamic linear model

The filtering problem can be significantly simplified by considering the case where the state and obser-
vation functions take the form

fr(0,u) = Frf +u and hi(0,v) = Hp0 + v

where F}, is a d X d matrix and Hy, is a d’ X d matrix, respectively called the transition matrix and the
observation matrix. The state and observation equations become

0, = F0,_1 + uy,
Y = Hp0p + vy,

and this case will be referred to as a dynamic linear model (DLM). We will often consider the case where
Fp=F, Hy = H, Dy, () = pu(-) and py, (-) = py(+) for any k& > 0, which will be called a constant DLM.

An example of DLM is given in Figure 2.1 for a state of the form 0y = (xy, @)T with &, and @&y, the
position and velocity of an object at time step k. Only the position is observed at each time step, so
that the velocity is hidden. The specific model considered here will be detailed in Section 2.2.3.
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2.2.1 Mean and variance of the predictive distributions

Since the transition noise u; and the observation noise v, are assumed to have a mean equal to zero,
it is easy to compute the mean and variance corresponding to the predictive state distribution at time
step k as
my = E(Or | Yo:r—1 = Yo:k—1)
= E(Frbr—1 + ur | Yo:r—1 = Yo:k—1)
= FyE(Ok—1|Yo:k—1 = Yo:k—1)
= Fyrg—1
with g1 = E(Or—1 | Yo:k—1 = Yo:x—1) and
Py, = var(0r | yo.k—1 = Yo:k—1)
=E((0r —m)(Or — mp)T | Yo:k—1 = Yo:k—1)
=E((FiOr—1 — Frriu—1)(FeOr—1 — Fivg—1)T | Yoe—1 = Yok—1) + var(uy)
= Fvar(0p—1|yo:k—1 = Yo:k—1)F) + var(uy)
= Fkﬁk_leT + var(uyg),
with I:’k_l = var(@r—_1| Yo.k—1 = Yo.xk—1). Following the same approach, we can also compute the mean
and variance of the forecasting distribution py, |y,.,._,(-]-) as
E(yx [ Yo:k—1 = Yok—1) = Hipmy
var(yy | Yo:k—1 = Yo:k—1) = Hy P H]l + var(vy).
These calculations reveal that DLMs are well-suited to Gaussian assumptions, as will be demonstrated
in the next section.
Note that the mean and variance of the state and observation can be predicted several steps ahead
using the same approach. For instance
E(0y |Yok—1 = Yo:k—1) = FnFp1 ... FRE(Or—1 | Yo:k—1 = Yo:k—1)
for any n > k, and
E(yn |Yok—1 = yok—1) = HoFFro1 ... FRE(Or—1 | Yo—1 = Yo:k—1)-

The corresponding expressions for the variance are equally easy to derive but take a more complex form.

2.2.2 Kalman filter

In many applications, the distribution of the transition noise uj and of the observation noise vy are
adequately modelled as (multivariate) Gaussian, that is

Puy, (u) = N(u; 0, Uk) and P, (U) = N(U; 0, Vk)

for some (positive-definite) matrices U, and Vi, and for any k& > 0. If the initial distribution mo(-) is
also Gaussian with mean mg and variance Py, then the corresponding model is referred to as a Gaussian
DLM.

Theorem 2.1 (Kalman filter). Consider a Gaussian DLM, the predictive distribution at any time step

k>0 is also Gaussian and verifies Tpi—1(0|yo, ..., ye—1) = N(O; mp, Pr) with
= Fpmy_

Mk Rk -1 T (prediction)

Py = Fp P F, + Uy,
and the posterior distribution at any time step k > 0 is also Gaussian and verifies 7y, (0 | yo, ..., yx) =
N(0; 1hi, Py) with

A K

e = Tk k2 (update)

Py = (14 — Ky Hy) Py,

16



where I is the identity matriz of size d and where

2k = yp — Hpmy (innovation)
Ky = P HS;! (optimal Kalman gain)
Sk = HyPLH] +Vj, (covariance of the innovation)

The Kalman filter defines a recursive algorithm to compute the mean and variance of the predictive
and filtering distributions at different time steps. We have already proved the formula for the mean and
variance of the predictive distribution in Section 2.2.1, however, the corresponding proof for the posterior
distribution is more complex and will be dealt with later.

In R, the Kalman filter is available as the function dlmFilter in the package d1lm.

2.2.3 A concrete example

We consider the scenario where the state of an object moving on a line must be inferred from the noisy
observations given by a sensor. The random variable 8; models the state of the object at time step k,
which is assumed to be of the form 6, = (x, ;)T € © = R2, with x; the position of the object and
@y, its velocity. We consider a constant Gaussian DLM (that is Uy = U and Vj, = V for any k > 0) and
assume that the object moves according to a nearly-constant velocity model described by

(1 A  n (A4 A3)2
F(O 1> and U=o <A3/2 A2

for some o’/ > 0, where A is the time step. The form of the matrix U will be justified in Chapter 3.
Additionally, we assume that the sensor simply observes the position, that is

H=(1 0) and V=90

for some ¢ > 0. An example of the application of this model on simulated data is shown in Figure 2.2.

2.2.4 Proof of the Kalman-filter update

There exist several ways to prove the update formula of the Kalman filter. The most obvious one is
to make the explicit calculations of the multiplication and integration between the Gaussian probability
distributions in Bayes’ rule. Although this is doable by using some usual algebraic manipulations, it is
more interesting to use statistical arguments to recover the desired result.

For this purpose, and dropping the time steps in the notation where there is no ambiguity, we
will first assume that our updated estimate 0 is a weighted average between the predicted estimate
0= E(05 | yo.x—1) and the observation yy, that is

0=K6+ Ky

with K a d x d’ matrix and K’ a d x d matrix to be determined.

Unbiased estimator It is easy to verify that the prediction step preserves unbiasedness, so assuming

v

that our predicted estimate  is unbiased, that is E(6) = E(8;) holds, we want to make sure that 6 is
also unbiased:

E(0) = E(K'6 + Ky
—E(K'6 + KHO, + Kvy,)
— K'E(0) + KHE(6)
= (K' + KH)E(6)

which indicates that we need to choose K’ = I; — KH to ensure that the update step also preserves
unbiasedness. This yields

6=(I,-KH)+ Ky,
=0+ K(yx — HO).
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Figure 2.2: Kalman filtering results for a nearly-constant velocity model.
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We can therefore verify the update equation for the mean by taking the expectation E(- | yo.x = yo.x). A
formula for the covariance can also be deduced as follows

var(0 — 0, |yor) = (Ig — KH) var(6 — 0y, | yo.e—1)(Ig — KH)T + K var(v;)KT.

This does not lead directly to the update equation for the covariance and yields instead

P=(I;—-KH)P(I;— KH)" + KVKT, (2.12)
This formula is actually valid for any gain K, including the above-defined optimal Kalman gain. It
remains to show in which sense this gain is optimal.

Optimal Kalman gain We want our estimator 6 to lead to a mean-square error that is as small as
possible and K is the only design matrix left in (2.12). Thus, we choose as a gain

K" = arglr(ninE(llé = 0k | youx)

where || - || is the Euclidean norm. It holds that
E(|0 — 65l1* | you) = trvar(9 — 61 | yo.r,)

with tr the trace operator, so we can minimise the trace of the variance instead. A useful result when
optimising a trace is

0
- T) =
tr(ABAT) = 2AB

which holds for any matrix A and any symmetric matrix B of appropriate dimensions. To find the
minimum of the trace of P, we differentiate the trace of its expression given in (2.12) with respect to K
as follows

o . 0 0
- _ _ _ T _ T
o 1(P) = 5z tr((La = KH)P(Iy — KH)T) + o tr(KVET)

= —2(I;— KH)PHT 4+ 2KV,

so that the minimum is found at
K =PHT(HPHT +V)™ !,

which is indeed the expression of the Kalman gain in Theorem 2.1.

2.2.5 Model checking

When dealing with real data, one way to verify that the considered model is appropriate is to look at
the distribution of the innovation. The innovation z; introduced in Theorem 2.1 is not random because
the observation yj at time step k has been assumed fixed. In general, if we consider the random variable
Yy, instead, the innovation also becomes a random variable z; defined as

2k = Y — E(Yr|vor_1) = yr — Hiby.

The conditional distribution of zj given yo.x—1 = yo.x—1 follows easily from the one of y; as N(+;0,.Sy).
It can also be proved that the innovation process (zj)r>o is uncorrelated, that is cov(zy_s, zx) = 0 for
any 0 > 0.

One can therefore verify the suitability of the model by checking that the innovation zj is indeed
distributed according to N(+; 0, Sk ) using, e.g., Q-Q plots, and that the innovation process is uncorrelated
using, e.g., autocorrelation functions.

2.3 Unknown parameters

It is often the case in practice that at least some of the parameters of the model are now fully known
in advance and must be estimated in parallel. The most usual situation is where U and/or V have a
known form but have unknown coefficients like o or ¢’ in Section 2.2.3. More generally, we denote 1)
the unknown parameter of the model in a given space ¥, which could affect any or all of the matrices
Fy, Hy, Uy or V. We consider two ways of solving this parameter estimation problem: the maximum
likelihood estimation (MLE) approach and the Bayesian approach.
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2.3.1 Maximum likelihood estimation

Consider the likelihood L, (¥; 90, .. .,Yn) = P%n (Yo, - --,Yn) at the value ¢ of the unknown parameter
given the observations yg,...,y,. In the context of MLE, the logarithm of the likelihood is usually
considered as

108 L (350, - - - yn) = logpiy, (Yo, - -+ Yn)

n
= log py, (vo) + Zlog kalyo:k—l(yk [ Yo, -+ s Yr—1)-
k=1

In the case of a Gaussian DLM, this expression simplifies to

n

1 — - 1 N
log L ;0. ym) = —5 D _log [BY| = 5 > (e = i) T(BY) ™ (e — i) + .
=0 k=0

with fn}f and p]zp the mean and variance of the predicted observation at time step k when the unknown
parameter is ¥ € ¥, and with ¢ a constant. The MLE 1,, at time step n can then be expressed as

&n = argmax log L, (¥; Y0, - -, Yn)-
Pew

Under various assumptions, the MLE can be shown to be consistent, that is, denoting 1* the true value
of the parameter, it holds that

1[} n—oo ’Q/J*

n .

Note that formally, this is a form of convergence in probability. Additionally, it can be proved that the
MLE is asymptotically normal, that is

V(i — %) 2225 N(0, I(y7) )

where the convergence is in distribution and where I(1)) is the Fisher information matriz such that

[L(4)]s,; = lim v ((8?/}1_ log pl. (yO:n)> (aw log Py, (yo: n)))

with 1 defined as the column vector (¢1,...,%x)T. If ¢ is a scalar then the Fisher information is also a
scalar defined as

. 1 2

I(¢) = lim —— 1Ew<<aw ogpyoﬂ(ym)) >

One important limitation with the MLE approach is that the uncertainty associated with TZJn is not

directly represented and hence, the Kalman filter will use this value of the parameter as the true one.
In order to solve the optimisation problem associated with the MLE, one can use existing numerical

optimisation routines such as optim in R. There is also a function d1mMLE that is more specific for the

type of problems presented in this section; this function is also part of the d1m package in R.

2.3.2 Bayesian approach

As usual in the context of Bayesian inference, we now consider that the unknown parameter is a random
variable 1 and we define some prior distribution pq(-) on ¥ in order to model the available information
about 1. We assume that the conditional distribution p9k|90:k_1’¢(- | -) has the Markov property, that is

P64 100.1— 1,0 Ok |00, -+, O0k—1,90) = Doy 0,1, (Ok | O—1,v).
In a similar way, we assume that the observation y; is conditionally independent of y; given 6 and
for any [ # k. It follows that the joint distribution of the states, the observations and the parameter is

n

POo.rion (005 -+ 5 0y Y0, -+, Y, ) = Pay (V)0 (00 | 9) 0o (yo | 0o, ¢ H Ok | Ok —1, )k (yr | Ok, ¥),
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where 7o (- [ 1), £, (- | 0k, ¥) and G (- | x—1,¥) stand respectively for the distributions pg, | (- | ¥), Pyy|6y.w (- | O 1)
and pg, |6, (- |0k—1,%). The filtering distribution can then be recovered by integrating out the pa-
rameter as

7Tk|n(9k ‘yO» R ayn) = /p9k71p|y0m (91@71/) | Yo, - - - 7yn) d’l[)

= /kaWJ,yo:n (ek | ¢7 Yo, - - 7yn)p’l/1|y0m, (¢ | Yo, - - 7y’n) dw

The first term in the integral is given by the Kalman filter for a fixed 1, however, it is not usually the
case that this integral can be computed analytically (although an example where it is will be detailed
in the next section). One then has to resort to stochastic simulation algorithms such as Markov chain
Monte Carlo (MCMC) or sequential Monte Carlo (SMC).

2.3.3 Extension of the Kalman filter to unknown variance

It is often the case in practice that the variance of the evolution noise and/or of the observation noise are
not known a priori and must be learned alongside the parameter of interest. For the sake of simplicity,
we assume that the form of the matrices Uy and V} is known except for a common coefficient that does
not depend on time, that is, for any k > 0,

Upy=0U, and V=V

for some o > 0 and some matrices U}, and V) of appropriate dimensions. We also assume that the prior
variance is of the form Py = ¢2P). The corresponding model can then be expressed via the evolution
and observation equations

0, = F.0,._1 + ou;
yi = HyOy + ov),

with u), ~ N(-;0,U}) and v}, ~ N(-;0,V/). To represent the fact that ¢ is unknown, we introduce a
random variable T corresponding to the precision induced by o. The prior distribution of 7 is defined
as a gamma distribution with parameters cg and Sy. To sum up, we have a priori

T ~Ga(-;a0,6) and Oy |T ~N(-;mo, 7 1 P)).

We want to show that if the posterior distributions of 7 and 0 | 7 take this form at time step k — 1, then
they also take this form at time step k. We therefore assume that

T | Yo:k—1 ~ Ga(-; -1, Br—1) and 01| T, Yok—1 ~ N(-;p_1, 7 PL_))

for some parameters ay—1 > 0, Br—1 > 0, mg_1 and P;_;. Since the prediction step only applies to
0y _1, it has no influence on ay_; and S;_; and we simply find that

my = Fpmp_1
P, = FyP,_F] +Uj.

Note that assuming that the prior variance is 7 !P} made the prediction equation for the variance
simpler by enabling the factorisation of the precision. Similarly, the forecasting distribution at time step
k given T is easily deduced to be

pyk\‘r,yo;k,l (yk | T,Y0,- - 7yk71) = N(Zlk, Hkmkv T_lsl/g>
with S;, = Hy P H} + V). Applying the Kalman update equation yields

mE = my + K2y
P = (I; — KxHy) P,

21



where the innovation and the Kalman gain are expressed as

2K = Yk — Hymy
Ky =PHIS ' = (v 'P)H](r7'S,) " = PLH] S, .
At the moment, we have determined the posterior distribution of 8 given 7. However, it is Bayes’ rule

for the joint (@, 7) that we need to obtain. Reusing the notations of Section 2.3.2 with 7 instead of v,
these two distributions can be related as follows:

p (9 T|y ) = Ek(yk |eva)pemﬂyo;kq(ak’T|y0:k—1)
0, . ks 0:k) —
kT |Yo:k Pyrlyon—r Yk | Yo:k—1)

B O (yr | Ok, T)Poy 1m0 1 Ok | 75 Y0ik—1) o« PurlT yoss Uk | 75 Y0:k—1)Priyor_1 (T | Yo:k—1)
Pyl yo0.k-1 (Yk | T, yO:kfl) Pyilyo:n—1 (yk | yO:kfl)
The first term indeed corresponds to the case of the Kalman filter update for a fixed 7. The distribu-

tions in the numerator of the second term are the marginal likelihood py, |7 .., (- | -) and the posterior
distribution of 7 at time step £ — 1, which can be combined as

/ T _ _
Puelm o Uk | T Youu—1)Ga(Ts a—1, Be—1) o< 74 /% exp ( - 52252 lzk)Ta’“’l Yexp(—Br_17)

so that

U

1
ap = o1+ o and Br = Br—1+ 52252_1%-

Noting that [y is the only term depending on yx, one can also compute the marginal likelihood
Pyilyon_r (Yk | Yo:k—1) by integration as follows

Pyrlyorn_1 Yk | Yok—1) = /Pyk\r,yo;kﬂ(yk | 7, yo:k—1)Ga(T; ag—1, Br—1) A7
o /7‘0""_1 exp(—p7) dT o B, “F.
Based on the expressions of aj and 5 we find

20, _q+d’
- 2

(ye — Hemy)T (ik_l 52)71(% - Hkmk)>

pyk\yo;k_l(yk | Yoik—1) x (1 + -

2001

which is multivariate t-distribution with 2ay_1 degrees of freedom with location Hgmy, and shape matrix

g k=L 67 . The statistics of such a distribution yield
k—1

E(yx | Yo:e—1 = Yo:k—1) = Himy, if 20,1 > 1
Br—1

Pkl g i 2ay g > 2,
o1 — 1 k I 200kg—1

var(yx | Yo:k—1 = Yok—1) =
the mean and the variance being undefined otherwise.

Since T follows a gamma distribution, the random variance 7! follows an inverse-gamma distribution
with the same parameters, that is

T Yok = Yo ~ Inv-Ga(-; oy, Br)

with

(o2

Inv-Ga(z; ag, Br) = P(Zk)x—ak—l exp(—pBi/x).

The mean of such a random variable is defined only when ay > 1 as i /(ax — 1) and the variance is
defined only when ay, > 2 as 82 /((ar, — 1)*(ag — 2)).
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