
Chapter 3

Classifying and building DLMs

In this chapter we will consider a special form of DLM for which the transition matrix Fk and the
observation matrix Hk are constant in time, i.e., Fk = F and Hk = H for any k ≥ 0. This sort of DLM
can be referred to as a time-series DLM. In this case, denoting µn = E(yn |θn) = Hθn the conditional
expectation of yn given θn, the expected value of µk+δ for some δ ≥ 0 given observations up to time k
can be expressed as a function of δ as

gk(δ) = E(µk+δ |y0:k = y0:k) = HF δm̂k,

where m̂k is the updated mean at time k. The vectors gk(δ), δ ≥ 0, can be referred to as forecasts and the
function gk is called the forecast function. Note that for any d× d matrix M , the convention is M0 = Id
with Id the d × d identity matrix. We also assume that the dimension d� of the observation space Y is
equal to 1, this type of DLM is called an univariate DLM; in this case, yk and µk are real-valued random
variables and gk is simply a real-valued function.

3.1 Classifying DLMs

Considering the fact that the class of all DLMs is extremely large, it is useful to restrict our attention
to specific models that have attractive properties and to limit any redundancy between models. This is
the objective in the following sections.

3.1.1 Observability

For the sake of simplicity, we first consider the case where there is no transition noise, that is where
uk = 0 almost surely for any k ≥ 0. It follows that θk = Fθk−1 and µn = HFn−kθk for any n ≥ k.
Note in particular that any θn is known as soon as θk is given for some k ≤ n and the problem can be
reduced to estimating θ0. A natural question is: how many observations need to be collected for θk to
be completely determined? Since θk is a vector of dimension d, at least d observations are required. We
therefore consider n = k + d− 1 and denote by µ�

k:n the (column) vector of the d successive conditional
expectations of the observations, which can be related to θk as follows:

µ�
k:n = Tθk

with the d× d observability matrix T defined as

T =




H
HF
...

HF d−1


 .

For θk to be fully determined by this equation, T has to be invertible (which is equivalent to T having
full rank). If this is the case then θk = T−1µ�

k:n.
These ideas can be extended to the general case where there is no specific assumption on the transition

noise uk, which leads to the following definition.
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Definition 3.1 (Observability). A univariate time-series DLM is observable if and only if the associated
observability matrix has full rank.

Unless otherwise stated, the DLMs considered in the remainder of this chapter will be assumed to be
observable, and we denote by M the class of all observable univariate time-series DLMs. In some specific
scenarios, it might be useful to consider DLMs that are unobservable, for instance if there exist equality
constraints on the parameter vector θk for any k ≥ 0 in which case rank deficiency can be compensated.

3.1.2 Similar and equivalent models

The class M of all observable DLMs of interest is still very large and we might need to identify and
remove any redundancy in it in order to further simplify it. In this section, we will introduce two ways
of identifying models with related features, the first one will focus on the transition matrix whereas the
second one will involve the entire DLM.

Throughout this section, we will consider two models M,M� ∈ M with respective transition matrices
F and F �, respective observation matrices H and H � and respective forecast functions gk and g�k.

Definition 3.2 (Similarity). The models M and M� are similar if and only if F and F � have identical
eigenvalues.

The main implication of the definition of similarity is that two similar models M and M� will have
the same form of forecast functions. For instance, if F and F � both have d distinct eigenvalues λ1, . . . ,λd,
then there exist E and E� such that F = EΛE−1 and F � = E�ΛE�−1 with Λ the diagonal matrix of
eigenvalues. It follows that

gk(δ) =

d�

i=1

ak,iλ
δ
i and g�k(δ) =

d�

i=1

bk,iλ
δ
i ,

for some scalars ak,i and bk,i, i ∈ {1, . . . , d}, so that the forecast functions have the same algebraic form.
Another way of characterising similar models is via the existence of a non-singular d × d similarity

matrix S verifying F = SF �S−1. In this case, the matrices F and F � are also said to be similar. This
way of relating transition matrices via a similarity matrix can be extended to the whole model, which
will in turn allow for defining a more specific connection between DLMs.

Let the DLM M� be characterised by the equations

θ�
k = F �θ�

k−1 + u�
k (3.1a)

yk = H �θ�
k + vk (3.1b)

with u�
k ∼ N(· ; 0,U �

k) and vk ∼ N(· ; 0,Vk). Given a non-singular d× d matrix S, we can re-parametrise
the state θ�

k of the DLM M� as θk = Sθ�
k, so that the system of equations (3.1) can now be expressed as

θk = SF �S−1θk−1 + Su�
k = SF �S−1θk−1 + uk

yk = H �S−1θk + vk

with uk ∼ N(· ; 0,SU �
kS

�). It follows that a new model M can be defined via the transition and
observation matrices F = SF �S−1 and H = H �S−1 and via the noise covariances Uk = SU �

kS
� and Vk.

Noting that
F δ = (SF �S−1)δ = (SF �S−1)(SF �S−1) . . . (SF �S−1) = SF �δS−1,

for any δ ≥ 0, and that m̂k = Sm̂�
k, it is easy to verify that

gk(δ) = HF δm̂k = (H �S−1)(SF �δS−1)(Sm̂�
k) = H �F �δm̂�

k = g�k(δ),

that is, M and M� have the same forecast function. In particular, these models are obviously similar.
Since models M and M� have been assumed to be observable, their observability matrices can be
introduced as T and T � respectively, and we find that T � = TS. This gives an expression of the similarity
matrix S from M� to M as S = T−1T �. We can now define a more restrictive relation between models
as follows.
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Definition 3.3 (Equivalence). Let M,M� ∈ M be two similar models with respective observability
matrix T and T � and denote by S = T−1T � the associated similarity matrix. The models M and M�

are said to be equivalent if m0 = Sm�
0 and P0 = SP �

0S
�, and, for any k ≥ 0,

Uk = SU �
kS

� and Vk = V �
k.

This concept is illustrated in the following example.

Example 3.1. If we consider a tracking problem on the real line, then defining the parameter vector
as θ�

k = (xk, ẋk)
� with xk the (random) position and ẋk the (random) velocity or as θk = (ẋk,xk)

�

obviously yields similar models. It is easy to see that

S =

�
0 1
1 0

�

so that, for instance, the transition matrix F for the state θk can be deduced from the transition matrix
F � for θ�

k as follows

F � =

�
1 Δ
0 1

�
and F = SF �S−1 =

�
1 0
Δ 1

�

with Δ the duration of a time step, noting that S−1 = S (matrices with this property are called
involutory).

Now that we have defined some ways of identifying models with similar features, the next question
is: how to pick the most natural model(s) out of an equivalence class of similar/equivalent models.

3.1.3 Canonical models

From the viewpoint of linear algebra, the relation of similarity between matrices is an equivalence relation
on the space of square matrices. For a given equivalence class of similar matrices, it is then natural to
consider the one with the “simplest” form as the canonical element in the class. For example, if a given
equivalence class is made of diagonalisable matrices then it makes sense to consider the diagonal matrix
it contains as canonical. However, not all matrices are diagonalisable so the best we can do is pick the
“most” diagonal matrix in each equivalence class. This matrix is usually considered to be the one of the
form

Jn1:b
(λ1, . . . ,λb) =



Jn1

(λ1)
. . .

Jnb
(λb)




with b and n1, . . . ,nb positive integers and with λ1, . . . ,λb scalars, where Jn(λ) is a n× n matrix of the
form

Jn(λ) =




λ 1

λ
. . .

. . . 1

λ




for any λ and any positive integer n. The matrix Jn1:b
(λ1, . . . ,λb) is said to be in the Jordan form and

Jn(λ) is called a Jordan block.
The ideas introduced here for square matrices can be extended to any DLMs in M. Henceforth, we

will denote by ed the vector of dimension d defined by ed = (1, 0, . . . , 0). We consider a DLM M ∈ M
with transition matrix F , observation matrix H, observability matrix T , noise matrices Uk and Vk and
prior N(· ;m0,P0). As a first step, the following two special cases can be identified:

One real eigenvalue If the transition matrix F has a single real eigenvalue λ of multiplicity d then

- the matrix F is similar to Jd(λ)

- the first element of H is different from zero

- any model M� with transition matrix Jd(λ) and observation matrix ed is said to be a canonical
similar model
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Multiple real eigenvalues If the transition matrix F has multiple real eigenvalues λ1, . . . ,λb of re-
spective multiplicities n1, . . . ,nb then

- the matrix F is similar to Jn1:b
(λ1, . . . ,λb)

- let s be the sequence (1,n1+1, . . . ,n1+ · · ·+nb−1+1), then the si-th element of H is different
from zero for any i ∈ {1, . . . , b}

- any model M� with transition matrix Jn1:b
(λ1, . . . ,λb) and observation matrix (en1

, . . . , enb
)

is said to be a canonical similar model

In both cases, the canonical similar model M∗ with noise matrices SUkS
� and Vk, with S = (T ∗)−1T ,

and prior N(· ;Sm0,SP0S
�) is said to be the canonical equivalent model. Illustrations of the behaviour

of a DLM with one real eigenvalue are given in Figure 3.1.

Remark 3.1. When selecting a given observation matrix H∗ for the canonical equivalent model, only
the observability of the model needs to be ensured. Indeed, the similarity matrix S will ensure that
observing the state θk in model M via Hθk will be equivalent to observing the state θ∗

k in model M∗

via H∗θ∗
k. For instance, if F = Jd(λ) for some given real λ and for d = 2 and if H = (1, 1) then the

canonical equivalent model also has Jd(λ) as transition matrix (this is already the canonical form) and is
such that H∗ = e2. To compute the corresponding similarity matrix, one must first compute the inverse
of T ∗ as

(T ∗)−1 =

�
1 0
λ 1

�−1

=

�
1 0
−λ 1

�

so that

S = (T ∗)−1T =

�
1 0
−λ 1

��
1 1
λ λ+ 1

�
=

�
1 1
0 1

�
.

The state θ∗
k can then be expressed as a function of the components of θk as

θ∗
k = Sθk =

�
θk,1 + θk,2

θk,2

�
,

which indeed ensures that observing Hθk is equivalent to observing H∗θ∗
k.

In general, not all eigenvalues will be real. However, since F is a real matrix, complex eigenvalues
come in complex conjugate pairs. We consider the case d = 2 to illustrate the specific properties of such
models. In this case, the two eigenvalues can be expressed as

λ1 = λ exp(iω) and λ2 = λ exp(−iω) (3.3)

for some scalars λ and ω and with i =
√
−1. Although F is similar to the matrix

Λ =

�
λ1 0
0 λ2

�
,

working with complex matrices is not generally appealing. Yet, a similarity matrix S can be identified
to arrive to a real matrix λR(ω) with

S =

�
1 1
i −i

�
and R(ω) =

�
cos(ω) sin(ω)
− sin(ω) cos(ω)

�
.

We can indeed verify that SΛS−1 = λR(ω); the corresponding observation matrix is

H = (1, 1)S−1 = (1, 0) = e2.

We therefore have the following properties in the complex case:

Complex eigenvalues with d = 2 If the transition matrix F has two complex-conjugate eigenvalues
λ1,λ2 defined as in (3.3) then

- any model M� with transition matrix λR(ω) and observation matrix (1, 0) is said to be a
canonical similar model
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(a) λ = −1.05, θ0 = (0,−1)�

(b) λ = −0.75, θ0 = (10,−1)�

(c) λ = 0.75, θ0 = (10,−1)�

(d) λ = 1.05, θ0 = (0,−1)�

Figure 3.1: The two components and observations of a 2-dimensional DLM with one real eigenvalue λ,
initialised at θ0 and with U = 0.4I2 and V = 1.
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(a) λ = 0.95

(b) λ = 1

Figure 3.2: The two components and observations of a 2-dimensional DLM with two complex eigenvalues,
initialised at θ0, without evolution noise, with θ0 = (2, 0)� and ω = π/2 and with V = 0.252.

- the canonical similar model M∗ with noise matrices SUkS
� and Vk, with S = (T ∗)−1T , and

prior N(· ;Sm0,SP0S
�) is said to be the canonical equivalent model.

- the observability matrix T ∗ of M∗ is

T ∗ =

�
1 0

λ cos(ω) λ sin(ω)

�

Illustrations of the behaviour of a DLM with two complex eigenvalue are given in Figure 3.2.

3.2 Building DLMs

We will first introduce some simple models in order to build more complex DLMs later in this chapter.
These simple models will also illustrate some of the concepts introduced in Section 3.1.

3.2.1 First- and second-order polynomial trend models

A DLM M in the class of observable time-series DLMs M is said to be a d-th order polynomial DLM if
its forecast function is of the form

gk(δ) = ak,0 + ak,1δ + · · ·+ ak,dδ
d−1.

We will be focusing on the first- and second-order polynomial DLMs since they are the most useful in
practice.

First order

The canonical model for the class of first-order polynomial DLMs is

θk = θk−1 + uk

yk = θk + vk
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with uk ∼ N(· ; 0,Uk) and vk ∼ N(· ; 0,Vk), that is F = H = 1. In spite of its simplicity, this model can
be useful when little information is available about the evolution of the quantity of interest. However, this
also means that there is no way of learning any complex trend with this model, so that the forecasting
capabilities of this model will be limited in general. In particular, the forecast function gk will be constant
and equal to gk(0) = m̂k.

Second order

In order to specify the form of the canonical model for the class of second-order polynomial DLMs, we
consider θk = (xk, ẋk)

� with xk and ẋk two real-valued random variables (the reason for the notation
ẋk will become clear shortly). The state and observation equations of the associated canonical model
are

xk = xk−1 + ẋk−1 + uk,1

ẋk = ẋk−1 + uk,2

yk = xk + vk

with uk = (uk,1,uk,2)
� ∼ N(· ; 0,Uk) and vk ∼ N(· ; 0,Vk), that is

F =

�
1 1
0 1

�
and H =

�
1 0

�
.

The first component xk of the parameter θk can be interpreted as the level or as the position depending
on the application while the component ẋk can be seen as the growth or as the velocity. It can be easily
verified that

F δ =

�
1 δ
0 1

�

for any δ ≥ 0 so that the forecast function can be expressed as

gk(δ) = HF δE(θk |y0:k = y0:k)

= E(xk |y0:k = y0:k) + δE(ẋk |y0:k = y0:k).

Assuming that the actual evolution of the quantity of interest corresponds to a nearly-constant growth,
a second-order polynomial DLM will provide better forecasting capabilities than the first-order one.
Although polynomial DLMs of order 3 and above would, in theory, further improve forecasting capabil-
ities, they are rarely used in practice since the higher-order components might be difficult to learn. For
instance, a third-order polynomial DLM would correspond to a nearly-constant acceleration model.

Example 3.2. In previous examples, the nearly-constant velocity model was introduced with a transition
matrix equal to

F =

�
1 Δ
0 1

�

with Δ the duration of a time step. To verify that this model is similar to a second-order polynomial
DLM, we can express it in a canonical form by first computing the eigenvalues via the characteristic
polynomial of F :

|F − λI2| = (1− λ)2

which has root λ = 1 with multiplicity 2. It follows that F is indeed similar to J2(1) which corresponds
to a second order polynomial DLM. To help with the interpretation of this result, we compute the
corresponding similarity matrix as

S =

�
1 0
0 Δ

�

which leads to a state θ∗
k in the canonical equivalent model of the form

θ∗
k =

�
θk,1
Δθk,2

�
.

Indeed, a growth rate of θk,2 over a period Δ is equivalent to a growth rate of Δθk,2 over a period 1.
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3.2.2 Seasonal models

Although, in general, one cannot expect to have reliable forecasts over long periods of time when the
evolution of the parameter θk is far from polynomial, there exists a special case of interest appearing in
many applications, that is when the changes in θk tend to repeat themselves over some given intervals.
For instance, this is often the case with data collected over several days, weeks or years which might
contain changes that are consistent with day/night, weekday/weekend, or seasons. This is why the
corresponding models are often referred to as seasonal models. This class of models can be described
in generality via a form-free approach. However, it can be advantageous in some cases to rely on more
restrictive assumptions based on trigonometric functions. The corresponding approach will be called a
Fourier-form representation of seasonality. Both cases will rely on the following concepts, defined for
any function f : N0 → R

1. the function f is cyclical or periodic if for some integer p > 1 it holds that

f(k + np) = f(k) for all integers k,n ≥ 0 (3.7)

2. the smallest integer p such that (3.7) holds is called the period of f

3. a full cycle is any interval of N0 containing p points, e.g., [k, k + p− 1] for some k ≥ 0

4. the set of seasonal factors is {f(k) : 0 ≤ k < p}, these values are then repeated over any full cycle

5. the seasonal factor vector at time step k ≥ 0 is

θk = (f(k), f(k + 1), . . . , f(k + p− 1))�

Form free

If f is a cyclical function then the consecutive seasonal factor vectors θk−1 and θk are related by θk =
Pθk−1 with P the p× p matrix of the form

P =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . .
...

0 0 . . . 0 1
1 0 0 . . . 0




The matrix P is called a permutation matrix since it corresponds to the permutation σ of {1, . . . , p} such
that

σ(p) = 1 and σ(i) = i+ 1 for any i ∈ {1, . . . , p− 1}.

A canonical form-free seasonal factor DLM M of period p can then be defined as a noisy version of
θk, that is as

θk = Pθk−1 + uk

yk = epθk + vk

for some uk ∼ N(· ; 0,Uk) and vk ∼ N(· ; 0,Vk). This model has very specific properties:

• the DLM M is observable with observability matrix T = Ip

• for some δ ≥ 0, let i ≡ δ (mod p), then the forecast function verifies

gk(δ) = epP
δE(θk |y0:k = y0:k) = E(θk,i+1 |y0:k = y0:k)
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Fourier form

When appropriate, the use of trigonometric functions can be highly beneficial since they provide a simple
parametrisation of the evolution of θk and can often be simpler to interpret. For instance, if the evolution
of θk can be faithfully modelled by a single sine or cosine then only two parameters are required, i.e. the
phase and the amplitude, whereas a form-free approach will require as many seasonal factors as there
are time steps within one period.

Any cyclical function f : N0 → R can be represented on {0, . . . , p− 1} as

f(j) = a0 +

h�

r=1

�
ar cos(ωrj) + br sin(ωrj)

�

with h = �p/2�, ω = 2π/p and with

ar =





1

p

p−1�

j=0

f(j) if r = 0

1

p

p−1�

j=0

(−1)jf(j) if r = p/2

2

p

p−1�

j=0

f(j) cos(ωrj) otherwise

and br =





0 if r = p/2

2

p

p−1�

j=0

f(j) sin(ωrj) otherwise

One of the simplest Fourier-form seasonal DLM follows from a forecast function of the following form

gk(δ) = ak cos(ωδ) + bk sin(ωδ) = e2R(ω)δ
�
ak
bk

�

for some coefficient ak, bk ∈ R. With E(θk |y0:k = y0:k) = (ak, bk)
�, this corresponds to a DLM with

observation matrix e2 and transition matrix R(ω), which we refer to as a harmonic DLM. In the case
where the frequency ω is equal to π, this DLM is not observable and reduces to a DLM with the
observation and transition matrix 1 and −1 respectively. Otherwise, when ω ∈ (0,π), the harmonic
DLM is observable with observability matrix

T =

�
1 0

cos(ω) sin(ω)

�
.

3.2.3 Superposition

We now have a few elementary building blocks available for modelling the evolution and observation
of the quantities of interest. Yet, it is often the case in real data that several of these models must
be combined to adequately fit the available observations and to make reliable forecasts. The following
theorem shows that time series that can be expressed as the sum of elementary time series can also be
modelled by a DLM which arises as the superposition of the corresponding elementary DLMs.

Theorem 3.1. Let (yk)k≥0 be a time series defined as

yk =

h�

i=1

yi,k,

where h is a positive integer and where, for any i ∈ {1, . . . ,h}, (yi,k)k≥0 is a time series modelled by a
DLM Mi of dimension di whose components are denoted θi,k, Fi,k, Hi,k, Ui,k and Vi,k. If, for any DLM
Mi, the corresponding noise vectors ui,k and vi,k are mutually independent of uj,k and vj,k, j �= i, then
the time series (yk)k≥0 is also modelled by a DLM of dimension d = d1 + · · ·+ dh characterised by

θk =



θ1,k
...

θh,k


 , Fk =



F1,k

. . .

Fh,k


 , Uk =



U1,k

. . .

Uh,k




as well as

Hk =
�
H1,k . . . Hh,k

�
and Vk =

h�

i=1

Vi,k.
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3.2.4 Defining the transition noise

One important but difficult task that has not been discussed yet is to define the covariance matrix of the
transition noise Uk of a given DLM M. This matrix determines how much the corresponding evolution
model can be trusted. For instance, in the one-dimensional case, if the value of Uk is 0 then the transition
is deterministic which is equivalent to assuming that the state evolves exactly according to the chosen
model. Alternatively, if the value of Uk tends to infinity, then the transition is uninformative and cannot
be used for any useful forecasting. In higher-dimensional settings, defining Uk is even more challenging.
One simple way to address this difficulty is to rely on the precision matrix arising from a deterministic
prediction and apply a discount factor α ∈ (0, 1) to it in order to model a loss of information. Formally,
if we denote P̂k−1 = var(θk−1 |y0:k−1 = y0:k−1) the updated covariance matrix at time step k − 1 ≥ 0,
then the corresponding predicted covariance matrix in a deterministic context if P̃k = FkP̂k−1F

�
k . The

associated precision matrix is simply P̃−1
k and the discounted version of it is αP̃−1

k . This approach yields
a predicted covariance matrix Pk expressed as

Pk = var(θk |y0:k−1 = y0:k−1) =
1

α
P̃k.

In order to identify the value of Uk corresponding to this approach, remember that Pk = P̃k + Uk, so
that

Uk =
1− α

α
P̃k =

1− α

α
FkP̂k−1F

�
k .

Note that the value of α is typically set in the interval [0.9, 0.99]. In the case of a superposed model, the
different elementary models often require distinct discount factor, which can be easily implemented.

In some cases, it is possible to determine the matrix Uk from physical principles. For instance, in
the situation where θk = (xk, ẋk)

� with xk and ẋk representing position and velocity respectively, one
can that the velocity will be affected by a noise with standard deviation aΔ (the integral of the constant
acceleration a over one time step of duration Δ) and the position will be affected by a noise with standard
deviation aΔ2/2 (again by integration). It follows that the state equation can be expressed as

θk =

�
1 Δ
0 1

�
θk−1 + a

�
Δ2/2
Δ

�
�k,

where a is the standard deviation of the random acceleration (zero-mean) and where (�k)k is an i.i.d.
sequence of random variables with standard normal distribution. This can be expressed equivalently as

θk =

�
1 Δ
0 1

�
θk−1 + uk

with uk ∼ N(· ; 0,U) where

U = a2
�
Δ2/2
Δ

��
Δ2/2
Δ

��
= a2

�
Δ4/4 Δ3/2
Δ3/2 Δ2

�
.

There are often several ways of defining the covariance matrix of the transition noise. For instance, one
could alternatively derive the form of U from a continuous-time nearly-constant velocity model. This
would yield a different expression

U = a�
�
Δ3/3 Δ2/2
Δ2/2 Δ

�
,

with a� > 0 another way of characterising the noise on the acceleration.

32


