Chapter 4

Modes of intervention

Intervention, which can be understood as the action of an external operator on the parameter of an
existing model, can be divided into two main categories:

Feed-forward: that is when additional information is received by the operator which indicates that
the model needs to be tuned in order to face changes that are expected to arise and that are not
covered by the existing model. This mode of intervention is anticipatory by nature.

Feedback: that is when the current model displays bad forecasting performance, either with respect to
an adversarial model or in the absolute. In this case, the operator has to identify when the model
most likely started to misbehave and, if possible, what is the cause of the decrease in forecasting
performance.

These modes of intervention will be studied in turn in the next two sections. In both cases, the interven-
tion can be local, e.g. removing an observation that is considered as an outlier, or it can have long-lasting
effects, e.g. when acting directly on the predicted distribution of the parameter or when changing the
model. Note that an outlier is not necessarily an erroneous observation, it can also be a true observation
that differs significantly from the observed trend before and after the time step when it occurs; in this
sense, an outlier might be a useful piece of information in itself, but not for the purpose of forecasting
future trends.

4.1 Feed-forward intervention

There are three main ways of performing feed-forward intervention:

1. Ifit is known in advance that the observation at time step k£ > 0 will most-likely be an outlier, then it
can simply be ignored for estimation purposes. The update step for that particular observation can
be skipped so that the posterior at time step k will be defined as being equal to the prior. Another
way of achieving the same result while still using the update equation is to set the variance Vj of
this observation to infinity; indeed, in this case, the covariance of the innovation Sy, = Hy P, H] +Vj
will also be infinite so that the Kalman gain Kj, = P,H] S,;l will be zero and the posterior mean

and variance will simply be expressed as mj = mj and If’k = P.

2. If some changes known to the operator are expected to affect the evolution of some or all of the
components of the parameter of interest, then the operator can decide to add some extra noise at
one or several time steps in order to bring more flexibility to the model. If there is some prior
knowledge about the direction in which the change will affect the different components then one
can introduce a control variable ¢ corresponding to the shift in predicted mean that is expected.
The prediction equation is then changed to

0, = F0,_1 + ¢, + ug,

where the variance Uy of uj can be increased to model that this given time step might be more
uncertain than others. The only difference in the corresponding Kalman filter recursion is that the
predicted mean becomes

my = Fpmp_1 + cg.
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3. In general, the operator can simply change the predicted mean and variance to the desired values.
However, acting directly on these quantities introduces inconsistencies in the sequential estimation
of the predicted and posterior statistics of the parameter and extra care needs to be taken when
performing operations involving past means and variances such as smoothing. This can be done as
follows: if we want the predicted mean to be equal to a given vector my and the predicted variance
to be equal to a given matrix P, then we can modify the state equation to

O = Fi0r_1 + ¢ + 1y,

where the modified transition matrix Fk, modified noise @y ~ N(-;0, (u]k) and control variable ¢y
are defined through

Fy = M Fy,
cr = My — My Frprig_q

U = MU M]

with M, = EkLl:17 where f/k and Ly are the unique upper-triangular matrices such that ﬁk = Ekluzz
and P, = Ly L] (Cholesky decomposition).

4.2 Feedback intervention

In some cases, there is no external information available prior to the deterioration of the predictive
performance which could have allowed for feed-forward intervention, so that only corrective measures
are applicable. The ways of performing feedback intervention are very similar to the ones introduced in
the feed-forward situation and will not be covered in details in this section. The main difficulty with
feedback intervention is elsewhere and can be summarised in three questions:

i) how to detect a significant decrease in predictive performance?
ii) how to characterise the cause of this loss of performance?
iii) how to determine when corrective measures should be applied?

We will first consider a general way of answering these questions (in the sense that it applies to more
general models than DLMs). This will be followed by a simpler error analysis that is restricted to DLMs.

4.2.1 Bayes’ factor

In this section, we consider a model monitoring technique which involves comparing the marginal likeli-
hood of two different models in order to determine which model best fits the data. The same technique
can be used more generally for problems like model selection but we restrict ourselves to the case where
one standard model My, i.e. the one used for inference so far, is challenged by another model M;. The
Bayes’ factor at time step k for Model Mg vs. M is defined as
Pyl (U5 | 905-1)

1
p(yk)|yo;k71 (yk | yO:k—l)

By =

where p(®(-) and p(!)(-) are probability density functions under Model Mg and M respectively. A
small Bayes’ factor, typically log By < —1, indicates evidence against My when compared to M; and
log By, < —2 indicates strong evidence. Note that the value of the Bayes’ factor depends on which model
is monitored versus which other model; for instance, the Bayes’ factor for Model M; vs. My is simply
1/By. The Bayes’ factor By can be useful to detect a significant decrease in predictive performance,
however, it might be more difficult to understand when corrective measures should be applied. For this
purpose, we introduce a slightly more general version of it as follows
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for some lag § € {1,...,k + 1}, and we note that By 1 = By and By s = BrpBi_1,6-1 when § > 1. This
does not completely address the difficulties raised earlier since fixing § to some value will only allow for
detecting discrepancies between Model M and the received observations that are consistent in duration
with the lag §. Since we are interested in detecting when M; is a better model than M, even locally,
we can consider a measure that gives an advantage to M7 such that

L, = min B
k 121612k k,6
which minimises the evidence in favour of M. The associated quantity which answers the question
about when to apply corrective measures is the optimum lag

07, = argmin By, s,
1<6<k

so that, in particular, it holds that Ly = By s:. The lag 0 is called the run-length at k and gives the
number of consecutive observations contributing against Mg. It indicates that the intervention should
be implemented at time step & — d; + 1. The following theorem shows how these two quantities can be
computed recursively.

Theorem 4.1. For any k > 1, it holds that
Lk = Bk min{l, kal}

and
5 1+, fLp1 <1
T otherwise.

The recursion for the run-length can be interpreted as follows: if the evidence favours M at time
step k — 1, i.e. Ly > 1, then we focus on the Bayes’ factor at time step k, otherwise we consider the
accumulated evidence against M. In practice, one can define a threshold 7, e.g. 7 = 0.1, and trigger
the intervention as soon as L < T.

Figure 4.1 illustrates the use of the Bayes’ factor for assessing a constant velocity model M with a
Brownian motion M as a reference, that is a 1-dimensional first order model.

4.2.2 Error analysis

A simpler approach that is more specific to DLMs is the monitoring of the consistency between the
observations and the forecast distribution. The error term to consider is

zr = Yr — Hpmy.
Two important cases can be identified:

1. Known observational variance, in which case the error zj, is characterised by the normal distribution

2. Unknown observational variance, in which case the error z;, has the generalised multivariate Stu-
dent’s t distribution St(- ; ng, 0, Sk) with ny and Sy the corresponding number of degrees of freedom
and shape matrix at time step k, respectively.
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Figure 4.1: Model checking for a constant velocity
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model with a Brownian motion as a reference.



