
Chapter 5

Classical time series

In this chapter, we will consider the different models that are widespread in the time series literature,
that is the autoregressive (AR), moving-average (MA) models as well as the standard combinations of
such models such as the ARMA model and the ARIMA model where the “I” stands for integrated.
However, we will start with an important notion in time-series analysis which will be relevant for the
considered models: stationarity.

5.1 Stationarity

The assumption of stationarity is important in time series analysis since it guarantees that the mean and
variance do not change over time. We consider a time series (yk)k≥0 characterised by a given model.
For (yk)k≥0 to be stationary, the joint distribution of this time series has to verify

pyk1
,...,ykn

(·) = pyk1+δ,...,ykn+δ
(·)

that is the joint probability density function characterising the time series at some time steps k1, k2, . . . , kn
for some n > 0 has to be invariant under a time shift of δ ≥ 0 steps. This condition is strong and might
be difficult to verify in practice so we also introduce a relaxed version called weak stationarity, which
simply assumes that E(yk) and var(yk) are constant with respect to k and that

cov(yk,yk−δ) = E
�
[yk − E(yk)][yk−δ − E(yk−δ)]

�
= γδ

for any k ≥ 0 and any δ < k, where γδ is referred to as the auto-covariance. Note that if the second
moment of a time series exists then stationarity implies weak stationarity, that is, stationarity is a
stronger assumption than weak stationarity, as the name suggest. Yet, in the case of a Gaussian DLM,
the two notions are equivalent (this is not surprising since normal distributions are characterised by their
first two moments).

Since the variance of the (weakly) stationary time series (yk)k≥0 is constant in time, the autocorre-
lation ρδ can be easily deduced from the auto-covariance as

ρδ =
E
�
[yk−δ − E(yk−δ)][yk − E(yk)]

�
�
var(yk−δ)

�
var(yk)

=
γδ

var(y0)

which is indeed independent of the time step k.

5.2 Stationary time series

The importance of the concept of weak stationarity can also be seen in the following decomposition
result, where we consider time series on the set of integers Z, that is including negative time steps.

Theorem 5.1 (Wold representation theorem). Any weakly stationary time series (yk)k∈Z can be written
as

yk = µ+
�

δ≥0

ψδ�k−δ
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for some scalar µ, some coefficients ψ0,ψ1, . . . with ψ0 = 1 and some sequence (�k)k∈Z of zero-mean,
uncorrelated random variables with constant variance.

Since a weakly stationary time series (yk)k∈Z has constant variance, it must hold that

var(yk) = var(�0)
�

δ≥0

ψ2
δ = cst

which implies that the sequence (ψi)i≥0 is square-summable (formally in �2). The decomposition of the
time series (yk)k∈Z can also be expressed

yk = µ+
�

δ≥0

ψδB
δ�k

where B is the backshift operator such that1 Byk = yk−1 and Bδyk = yk−δ for any δ > 0. This
expression can be written more compactly as yk = µ+ ψ(B)�k by introducing the polynomial function

ψ(x) = 1 + ψ1x+ ψ2x
2 + . . .

for any real x such that |x| < 1. Finally, if there exists a polynomial function φ(·) of the form φ(x) =
1− φ1x− φ2x

2 − . . . such that ψ(x)φ(x) = 1 for any x such that |x| < 1 then ψ is said to be invertible
and the expression of the time series (yk)k∈Z can be changed once more to φ(B)(yk − µ) = �k.

5.2.1 The autoregressive and moving-average models

If the sequence of coefficients φ1,φ2, . . . is such that φδ = 0 for any δ strictly greater than an integer
p > 0 then the time series (yk)k∈Z is said to be autoregressive process of order p, denoted AR(p), and
expressed as

yk = µ+

p�

δ=1

φδ(yk−δ − µ) + �k.

The case where p = 1 provides useful insights on the behaviour of autoregressive processes. Indeed, in
this case:

- The expression of the process simplifies to yk = µ+ φ1(yk−1 − µ) + �k
- The variance is such that var(y0) = var(�0)/(1− φ2

1) given that |φ1| < 1
- The autocorrelation is ρδ = φδ

1

- The corresponding polynomial function ψ(·) is

ψ(x) = 1/φ(x) = 1 + φ1x+ φ2
1x

2 + . . .

for any real x such that |x| < 1
- The random variable yk can be expressed as a function of y0 and the noise sequence (�k)k≥0 as

yk = µ+ φ1(yk−1 − µ) + �k

= µ+ φ1(φ1(yk−2 − µ) + �k−1) + �k

= [. . . ]

= µ+ φk
1(y0 − µ) +

k−1�

i=0

φi
1�k−i

= (1− φk
1)µ+ φk

1y0 +

k−1�

i=0

φi
1�k−i

from which it can be deduced that |φ1| < 1 yields a stationary process (shocks will die out with
time), whereas |φ1| = 1 gives a random walk (shocks are permanent) and |φ1| > 1 makes the
process unstable (shocks are amplified over time even if µ = 0).

1the backshift operator is formally defined as B(y·)(k) = yk−1 where y· is the function on Z defined as y· : k �→ yk.
The term Bδ is understood as the δ-fold composition of B.
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It follows that the variance gets larger as φ1 gets closer to 1 and the autocorrelation ρδ decays exponen-
tially in δ.

Considering again the expression of yk based on the coefficients ψ0,ψ1, . . . , we can take a similar
approach and assume that ψδ = 0 for any δ strictly greater than an integer q > 0. In this case, the time
series (yk)k∈Z is said to be moving-average process of order q, denoted MA(q), and expressed as

yk = µ+

q�

δ=0

ψδ�k−δ

with ψ0 = 1 as before. Since yk and yk−δ depend on different components of the sequence (�k)k∈Z if
δ > q, it is easy to verify that ρδ = 0 for any such δ. This is a crucial difference between AR and MA
processes (remember that even AR(1) processes have ρδ > 0 for all δ). It follows that MA processes are
useful for modelling local dependencies, at least for small values of q.

To illustrate the properties of MA(q) processes, we consider the case of q = 1:

- The expression of the process simplifies to yk = µ+ �k + ψ1�k−1

- The (constant) variance is var(y0) = (1 + ψ2
1) var(�0)

- The 1-lag autocorrelation is ρ1 = ψ1/(1 + ψ2
1)

- The corresponding polynomial function φ(·) is

φ(x) = 1/ψ(x) = 1− ψ1x+ ψ2
1x

2 − . . .

for any real x such that |x| < 1

If one wants to fit an MA(1) model based on the 1-lag autocorrelation ρ1, an ambiguity will arise since
both the coefficients ψ1 and ψ−1

1 yield the same value of ρ1. Considering the associated expression of yk

based on the polynomial function φ(·), it appears that |ψ1| > 1 generates unwanted large dependencies
on past values of the time-series. A coefficient verifying |ψ1| < 1 is therefore preferred.

5.2.2 The autoregressive moving-average model

Although both AR(p) and MA(q) models can approximate any time series by taking the parameters p
and q large enough, such an approximation might also involve a large number of coefficients. Since these
two models complement each other, it is often appropriate to consider them both simultaneously and
the corresponding model is called an autoregressive moving-average model or ARMA model. Formally,
a time series (yk)k∈Z of the form

yk = µ+

p�

δ=1

φδ(yk−δ − µ) +

q�

δ=1

ψδ�k−δ + �k

can be introduced for some p, q ≥ 0 with either p > 0 or q > 0, which will be referred to as ARMA(p, q).

An ARMA(p, q) model, and hence an AR(p) or MA(q) model, can be expressed as a DLM by iden-
tification of a suitable parameter vector θk together with the corresponding evolution and observation
matrices F and H and noise terms uk and vk. For the sake of simplicity, we consider µ = 0 and introduce
d = max{p, q + 1}, so that yk can be expressed as

yk =

d�

δ=1

�
φδyk−δ + ψδ�k−δ

�
+ �k

with φδ = 0 when p < δ ≤ d and ψδ = 0 when q < δ ≤ d. The associated DLM, of dimension d, can be
expressed as

θk = Fθk−1 + uk

yk = edθk
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that is with vk = 0, where

F =




φ1 1 0 . . . 0
φ2 0 1 . . . 0
...

...
...

. . .
...

φd−1 0 0 . . . 1
φd 0 0 . . . 0




and uk =




1
ψ1

ψ2

...
ψd−1




�k.

It is easy to verify that this DLM yields the right form for yk as follows: the observation equation gives
yn = θn,1 for any n, and it follows from the first component of the evolution equation at time step k
that

yk = φ1θk−1,1 + θk−1,2 + �k

= φ1yk−1 + θk−1,2 + �k.

Yet, θk−1,2 can be further expressed using the evolution equation at time step k − 1, which leads to

yk = φ1yk−1 +
�
φ2θk−2,1 + θk−2,3 + ψ1�k−1

�
+ �k

= φ1yk−1 + φ2yk−2 + θk−2,3 + ψ1�k−1 + �k,

where the original expression of yk starts to appear. Iterating this procedure obviously leads to the
desired result.

Example 5.1. Consider an ARMA(2, 1) process with µ = 0, i.e. yk = φ1yk−1 + φ2yk−2 + ψ1�k−1 + �k.
The associated DLM is

θk =

�
φ1 1
φ2 0

�
θk−1 +

�
1
ψ1

�
�k

yk =
�
1 0

�
θk.

We want to apply the approach of Chapter 3 to understand how this DLM behaves. For this purpose
we have to compute the eigenvalues of F , for instance via the characteristic polynomial as follows

|F − λI2| = λ2 − λφ1 − φ2.

The discriminant is Δ = φ2
1 + 4φ2 so that the roots are

λ1 =
1

2

�
φ1 +

√
Δ
�

λ2 =
1

2

�
φ1 −

√
Δ
�

which might be distinct real eigenvalues if Δ > 0, a single eigenvalue of multiplicity 2 if Δ = 0 or a
pair of conjugate complex numbers if Δ < 0. The ARMA(2, 1) process will therefore assume different
behaviours depending on φ1 and φ2, the model being stable if |λ1| < 1 and |λ2 < 1|, i.e. we want the
roots of the characteristics polynomial to be inside of the unit circle (in the complex plane). The result
does not depend on ψ1 which only affects the magnitude of the noise. Focusing on the AR(2) part of
this model, we could also consider the corresponding polynomial φ(·) defined as

φ(x) = 1− φ1x− φ2x
2.

The polynomial φ verifies φ(1/λ) = |F−λI2| and therefore has the same discriminant. The corresponding
roots are

x1 =
1

2φ2

�
φ1 +

√
Δ
�
=

λ1

φ2

x2 =
1

2φ2

�
φ1 −

√
Δ
�
=

λ2

φ2

which will lie outside of the unit circle whenever λ1 and λ2 are inside of it since φ2 < 1 for a stable
AR(2) process.

Note that other DLMs can be used to write classical time-series models depending on the context. In
particular, in the case of an AR(p) process with unknown coefficients, one can consider θk = (φ1, . . . ,φp)

�

with F = Ip and uk = 0, so that θk = θk−1, as well as with Hk equals to the row vector of the p previous
observations (yk−1, . . . , yk−p) and with vk = �k.
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5.3 Non-stationary time series

There are two main reasons for a time-series to fail to be stationary. Non-stationarity can be caused by
the presence of i) a polynomial trend and/or ii) a seasonal trend.

These components can however be easily removed. For instance, if a time series (yk)k∈Z follows a
second-order polynomial model, it will obviously be non-stationary as soon as the rate of growth is non-
zero; however the time series with term yk − yk−1 at time step k will be stationary. Using once again
the backshift operator B, this new time series can be written as ((1 − B)yk)k∈Z. Similarly, if (yk)k∈Z
follows a dth-order polynomial model then the time series ((1−B)d−1yk)k∈Z will be stationary.

Seasonal trends of period p can also be removed by subtracting another term of the series that is
p time steps apart, e.g. the time series with term yk − yk−p will not display any seasonal trend if the
original time series displays a seasonal trend of period p. This can also be expressed using the backshift
operator B as ((1−Bp)yk)k∈Z.

These two transformations are referred to as differencing and can be combined when both polynomial
and seasonal trends are present, in which case the corresponding time series will be of the form

�
(1−B)n(1−Bp)yk

�
k∈Z (5.5)

for some n > 1 and some p > 1. If the time series (5.5) follows an ARMA model then (yk)k∈Z is said to
be an autoregressive integrated moving-average (ARIMA) process.

Example 5.2. In order to illustrate differencing for time series displaying a polynomial trend, we consider
a third-order polynomial trend model as follows

θk =



1 1 0
0 1 1
0 0 1


θk−1 + uk

yk =
�
1 0 0

�
θk.

with the components of θk interpreted as a position xk, a velocity ẋk and a constant acceleration ẍ, i.e.

θk =



xk

ẋk

ẍ


 and uk =



�k
�̇k
0


 .

The term �̇k is interpreted as the noise on the velocity and there is no noise on the acceleration (which
would not be constant otherwise). The differencing that must be applied to the time series (yk)k∈Z to
obtain a new stationary time-series (y�

k)k∈Z is

y�
k = (1−B)2yk = yk − 2yk−1 + yk−2.

We can use the state equation to find

yk = xk−1 + ẋk−1 + �k

= xk−2 + ẋk−2 + �k−1 + ẋk−2 + ẍ+ �̇k−1 + �k

as well as
yk−1 = xk−1 = xk−2 + ẋk−2 + �k−1

and yk−2 = xk−2. Combining these terms, we find that y�
k = ẍ+ �k − �k−1 + �̇k−1 which is stationary

whenever (�k)k∈Z and (�̇k)k∈Z are uncorrelated and have constant variance.
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