Chapter 5

Classical time series

In this chapter, we will consider the different models that are widespread in the time series literature,
that is the autoregressive (AR), moving-average (MA) models as well as the standard combinations of
such models such as the ARMA model and the ARIMA model where the “I” stands for integrated.
However, we will start with an important notion in time-series analysis which will be relevant for the
considered models: stationarity.

5.1 Stationarity

The assumption of stationarity is important in time series analysis since it guarantees that the mean and
variance do not change over time. We consider a time series (yx)r>o characterised by a given model.
For (yi)r>0 to be stationary, the joint distribution of this time series has to verify

Pyiy sk, () = Pyri 465 Ykn+s ()

that is the joint probability density function characterising the time series at some time steps k1, ko, . .., kn,
for some n > 0 has to be invariant under a time shift of § > 0 steps. This condition is strong and might
be difficult to verify in practice so we also introduce a relaxed version called weak stationarity, which
simply assumes that E(yy) and var(yy) are constant with respect to k and that

cov(y, Ye—s) = E([yr — E(yr)l[yr—s — E(yr—s)]) = s

for any k£ > 0 and any § < k, where ~; is referred to as the auto-covariance. Note that if the second
moment of a time series exists then stationarity implies weak stationarity, that is, stationarity is a
stronger assumption than weak stationarity, as the name suggest. Yet, in the case of a Gaussian DLM,
the two notions are equivalent (this is not surprising since normal distributions are characterised by their
first two moments).

Since the variance of the (weakly) stationary time series (yx)g>0 is constant in time, the autocorre-
lation ps can be easily deduced from the auto-covariance as

E(lye-s — Elyr-o)llyr —E(ys)]) _
Vvar(yi—s)\/var(yr) var(yo)

which is indeed independent of the time step k.

pPs =

5.2 Stationary time series

The importance of the concept of weak stationarity can also be seen in the following decomposition
result, where we consider time series on the set of integers Z, that is including negative time steps.

Theorem 5.1 (Wold representation theorem). Any weakly stationary time series (yx)rez can be written
as

Yo =1+ Y Ysers

6>0
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for some scalar p, some coefficients o, 1, ... with g = 1 and some sequence (€g)rez of zero-mean,
uncorrelated random variables with constant variance.

Since a weakly stationary time series (yi)rez has constant variance, it must hold that

var(yg) = var(ep) Z V3 = cst

6>0

which implies that the sequence (1;);>0 is square-summable (formally in ¢?). The decomposition of the
time series (yx)rez can also be expressed

Ye =+ Y sBe
5>0

where B is the backshift operator such that' By, = yr_; and By, = yi_s for any § > 0. This
expression can be written more compactly as yi = p + ¢¥(B)e€y by introducing the polynomial function

Y(x) =1+ 1o+ hox® + ...

for any real = such that |z| < 1. Finally, if there exists a polynomial function ¢(-) of the form ¢(z) =
1 — ¢12 — ¢pox? — ... such that ¥(x)¢(x) = 1 for any x such that || < 1 then v is said to be invertible
and the expression of the time series (yx)rez can be changed once more to ¢(B)(yr — 1) = €.

5.2.1 The autoregressive and moving-average models

If the sequence of coefficients ¢1, ¢o,... is such that ¢s = 0 for any § strictly greater than an integer
p > 0 then the time series (yg)rez is said to be autoregressive process of order p, denoted AR(p), and
expressed as

p
Y = p+ Z¢6(yk—6 — 1) + €.
5=1

The case where p = 1 provides useful insights on the behaviour of autoregressive processes. Indeed, in
this case:

The expression of the process simplifies to yr = 1+ ¢1(yr—1 — 1) + €
- The variance is such that var(yg) = var(€g)/(1 — ¢3) given that |¢;] < 1
- The autocorrelation is ps = ¢¢

- The corresponding polynomial function (-) is

P(x) = 1/¢(x) = 1+ ¢z + ¢fz” + ...

for any real z such that |z| < 1
The random variable y; can be expressed as a function of yy and the noise sequence (€x)r>0 as

Yo =+ d1(Yp—1 — 1) + €
=p+ ¢1(D1(Yr—2 — 1) + €r—1) + €
— .

k—1
=p+df(yo—p) + Y dlers
1=0

k—1
= (1= ¢7)n+ diyo + Z D1 €k
i=0
from which it can be deduced that |¢1| < 1 yields a stationary process (shocks will die out with

time), whereas |¢1| = 1 gives a random walk (shocks are permanent) and |¢1| > 1 makes the
process unstable (shocks are amplified over time even if © = 0).

Lthe backshift operator is formally defined as B(y.)(k) = yx_1 where y. is the function on Z defined as y. : k — yz.
The term B? is understood as the §-fold composition of B.
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It follows that the variance gets larger as ¢, gets closer to 1 and the autocorrelation ps decays exponen-
tially in 4.

Considering again the expression of y; based on the coefficients g, 1,..., we can take a similar
approach and assume that 15 = 0 for any J strictly greater than an integer ¢ > 0. In this case, the time
series (Yi)kez is said to be moving-average process of order q, denoted MA(q), and expressed as

q
Yo =+ Y bser s
5=0

with 19 = 1 as before. Since y; and yi_s depend on different components of the sequence (e)iez if
0 > q, it is easy to verify that ps = 0 for any such 4. This is a crucial difference between AR and MA
processes (remember that even AR(1) processes have ps > 0 for all §). It follows that MA processes are
useful for modelling local dependencies, at least for small values of q.

To illustrate the properties of MA(q) processes, we consider the case of ¢ = 1:

- The expression of the process simplifies to yr = pu + €x + YP1€x_1
- The (constant) variance is var(yg) = (1 + ¥?) var(eo)

- The 1-lag autocorrelation is p1 = 11 /(1 + ¢3)

- The corresponding polynomial function ¢(-) is

o(x) =1/9p(z) =1 — 1oz +¢iz® — ...
for any real x such that |z| < 1

If one wants to fit an MA(1) model based on the 1-lag autocorrelation p;, an ambiguity will arise since
both the coeflicients ¢, and ¢, ! yield the same value of p;. Considering the associated expression of yy,
based on the polynomial function ¢(-), it appears that |[¢)1| > 1 generates unwanted large dependencies
on past values of the time-series. A coefficient verifying |¢;| < 1 is therefore preferred.

5.2.2 The autoregressive moving-average model

Although both AR(p) and MA(g) models can approximate any time series by taking the parameters p
and ¢ large enough, such an approximation might also involve a large number of coefficients. Since these
two models complement each other, it is often appropriate to consider them both simultaneously and
the corresponding model is called an autoregressive moving-average model or ARMA model. Formally,
a time series (yg)rez of the form

p q
Yo =1+ > Gs(Yn—s — 1)+ D Vs€hs + €k
=1 5=1

can be introduced for some p, ¢ > 0 with either p > 0 or ¢ > 0, which will be referred to as ARMA(p, q).

An ARMA(p, ¢) model, and hence an AR(p) or MA(q) model, can be expressed as a DLM by iden-
tification of a suitable parameter vector 6 together with the corresponding evolution and observation
matrices F' and H and noise terms uj and vy. For the sake of simplicity, we consider p = 0 and introduce
d = max{p, ¢ + 1}, so that y; can be expressed as

d
Yo = > (GsYr—s + Vs€s) + €
5=1

with ¢s = 0 when p < § < d and s = 0 when ¢ < § < d. The associated DLM, of dimension d, can be
expressed as

0, = FO,_1 + uy

Yr = eq0;
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that is with vy = 0, where

g1 10 0 1
o2 0 1 0 Y1
F= : Lo and up = P2 €k
¢q-1 0 0 ... 1 :
¢¢ 0 0 ... O Va—1

It is easy to verify that this DLM yields the right form for y; as follows: the observation equation gives
Yyn = 0,1 for any n, and it follows from the first component of the evolution equation at time step k
that

Y = $10k—11 +0r_12 + €
= 1Yp—1+ Op—12 + €.
Yet, 61,2 can be further expressed using the evolution equation at time step & — 1, which leads to
Y = 0191 + (020k—21 + Op—23 + V1€p_1) + €
= O1Yk—1 + P2Yr—2 + Or_23 + V1€x_1 + €,

where the original expression of yj starts to appear. Iterating this procedure obviously leads to the
desired result.

Ezample 5.1. Consider an ARMA(2,1) process with p = 0, i.e. yp = P1Yp—1 + PoYp—2 + V1€k_1 + €.

The associated DLM is
¢ 1 1
0, = 0;_
k (¢2 o) k-1 + h €k

Y = (1 0) 0.

We want to apply the approach of Chapter 3 to understand how this DLM behaves. For this purpose
we have to compute the eigenvalues of F', for instance via the characteristic polynomial as follows

|F = AL| = A* — A1 — ¢2.
The discriminant is A = ¢2 + 4¢» so that the roots are

)\1 = %((bl‘F\/Z)
Yo = (6~ VA

which might be distinct real eigenvalues if A > 0, a single eigenvalue of multiplicity 2 if A = 0 or a
pair of conjugate complex numbers if A < 0. The ARMA(2,1) process will therefore assume different
behaviours depending on ¢; and ¢2, the model being stable if |A;| < 1 and |y < 1], i.e. we want the
roots of the characteristics polynomial to be inside of the unit circle (in the complex plane). The result
does not depend on v which only affects the magnitude of the noise. Focusing on the AR(2) part of
this model, we could also consider the corresponding polynomial ¢(-) defined as

d(x) =1 — ¢ — oz’

The polynomial ¢ verifies ¢(1/X) = |F— Al5| and therefore has the same discriminant. The corresponding
roots are

_ 1 e )\1
1'1 2¢2 ( ! ) ¢2
1 e )\2

2 2¢2 ( ! ) ¢2

which will lie outside of the unit circle whenever \; and Ay are inside of it since ¢o < 1 for a stable
AR(2) process.

Note that other DLMs can be used to write classical time-series models depending on the context. In
particular, in the case of an AR(p) process with unknown coefficients, one can consider 0y, = (¢1,...,¢p)7
with F' = I, and uj = 0, so that 8y, = 0;_1, as well as with H}, equals to the row vector of the p previous
observations (Yx—1,...,Yx—p) and with v, = €.
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5.3 Non-stationary time series

There are two main reasons for a time-series to fail to be stationary. Non-stationarity can be caused by
the presence of i) a polynomial trend and/or ii) a seasonal trend.

These components can however be easily removed. For instance, if a time series (yg)rez follows a
second-order polynomial model, it will obviously be non-stationary as soon as the rate of growth is non-
zero; however the time series with term y, — yr—1 at time step k will be stationary. Using once again
the backshift operator B, this new time series can be written as ((1 — B)yx)rez. Similarly, if (yx)rez
follows a d'"'-order polynomial model then the time series ((1 — B)?~lyy)xez will be stationary.

Seasonal trends of period p can also be removed by subtracting another term of the series that is
p time steps apart, e.g. the time series with term y; — yi—, will not display any seasonal trend if the
original time series displays a seasonal trend of period p. This can also be expressed using the backshift
operator B as ((1 — BP)yy)kez-

These two transformations are referred to as differencing and can be combined when both polynomial
and seasonal trends are present, in which case the corresponding time series will be of the form

(1=B)"(1 = B")yk), oy, (5.5)

for some n > 1 and some p > 1. If the time series (5.5) follows an ARMA model then (yx)kez is said to
be an autoregressive integrated moving-average (ARIMA) process.

Ezxample 5.2. In order to illustrate differencing for time series displaying a polynomial trend, we consider
a third-order polynomial trend model as follows

1 1 0
0.,=10 1 1|01+ u
0 0 1

Y = (1 0 0) 0.

with the components of 8y interpreted as a position xy, a velocity &, and a constant acceleration &, i.e.

T €k
Hk = Cbk and U = ék
4y 0

The term € is interpreted as the noise on the velocity and there is no noise on the acceleration (which
would not be constant otherwise). The differencing that must be applied to the time series (y)rez to
obtain a new stationary time-series (y},)xez is

Y = (1— B)’yr = yr — 2051 + Yr2.
We can use the state equation to find

Yk = Tp—1 + Tp—1 + €
=Tp_o+ Tp—o+ €1+ Tp_o+ T+ €x_1 + €

as well as
Yr-1=Tp 1 =Tk 2+ Ty 2+ € 1

and yi_2 = ®,_2. Combining these terms, we find that y;, = & + €, — €,_1 + €x_1 which is stationary
whenever (€x)rez and (€ )rez are uncorrelated and have constant variance.
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