Exercise sheet 1
Solutions

Exercise 1. Since the measurements are conditionally independent given 6, we can use the result
derived in the lecture notes (Section 1.3.1), that is, the posterior distribution of 6 is normal with mean

and variance
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with g, = n~' 3" | y;. In particular, n = 2 since there are two measurements y; = 5 and y» = 4, the
corresponding variance is 02 = 9 and the prior is defined by pg = 10 and 03 = 4. It follows that
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The posterior mean ps is a weighted average between the prior mean pg and the observations yi,ys.
Also, the posterior variance is smaller than the prior variance.

Exercise 2. 1. Considering the expression of the exponential distribution as a function of the pa-
rameter A, it appears that a gamma prior is suitable since they both are of the form = — cz® exp(—bx)
for some constants a, b, c.

2. We first consider the likelihood of all the observations as follows
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with g, =n~! >, yi. We proceed with the computation of the posterior distribution as follows
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which is a gamma distribution with parameters o’ = a +n and 8’ = 8 + ng,. The posterior mean is
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where /3 is the prior mean. It appears that, as n tends to infinity, the posterior mean tends to 7,
which can then be identified as the sample mean for 8. The posterior distribution of 9» = 8~' can be
found using the change of variable formula
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with f: (0,00) = (0,00) defined by f(8) = 1/6. If follows that

1
Pyplyrn (W 1Y15-- 5 yn) = Ga(l/vsa +n, B+ nyn) —

()
_ 8 =L exp(—B' /).
NG




This distribution is referred to as the inverse-gamma distribution. We can compute its posterior expected
value, or posterior mean, in the following way
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The integrand is proportional to yet another inverse-gamma distribution so we know the value of the
integral to be the inverse of the normalising constant in that distribution, that is
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where 3/(a — 1) is the prior mean of ¥ and ¥, is its sample mean.

3. The predictive distribution of y,11 given yi1., = (y1,...,¥yn) can be expressed as follows
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This integrand can be recognised to be a gamma distribution up to a normalising constant, so that
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In order to verify the obtained expression is indeed a p.d.f., one can verify that its integral is equal
to 1 (this is made easier by making the change of variable x = 8’ + y). As a remark, this predictive
distribution is a Pareto distribution.

Exercise 3. 1. Considering the expression of the Poisson distribution as a function of the parameter
A, it appears that a gamma prior is suitable since they both are of the form = — cz® exp(—bx) for some
constants a, b, c.

2. The posterior distribution of @ given the first n observations can be expressed up to a constant of
proportionality as the product between the likelihood of all observations and the prior, that is
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where, as usual, g, = n~'>""" | y; is the sample mean of the n first observations. It follows that the
posterior distribution is a gamma distribution with parameters o’ = o + ng, and 8’ = 8+ n so that the
posterior mean is
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3. The predictive distribution of ¥, 11 given y1., = (y1,-..,Yyn) can be expressed as follows
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where the last line follows from identifying the integrand as being proportional to a gamma distribution
with parameters o’ +y and 8’ + 1. As a remark, this last distribution can be identified as a negative-
binomial distribution NB(-;r,p) with parameters r > 0 and p € (0,1), defined as
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with the following identification of the variable and parameters:
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The negative-binomial distribution as for mean pr/(1 — p) and variance pr/(1 — p)? so that
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Exercise 4. In Section 1.1.3 of the lecture notes, it was demonstrated that the normal-gamma prior is
conjugate for a normal likelihood with unknown mean and variance and that the corresponding posterior
distribution is of the form
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where the usual notations for the prior parameters have been used and where & = n™* S (v — Un)?.
It follows that the predictive distribution of y,,4+1 given y1., = (y1,...,¥yn) can be expressed as
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The argument A(y, i, 7) of the exponential can be rewritten as

-
Aly, p7) = =5 (knt® = 2kn it + ki, + y* — 2yp + p1°)

(kn,un + y)2 o (kn,un + y)2
ky,+1 ky,+1

_% ((kn =+ 1):“2 - Q(knﬂn + y),u + + kn,u% + y2>

Tk, + 1) _kn,un—i—y 2_ T o

- 5 (u e ) 2(kn+1)( K202 — 2yknttn — Y2 + ko (ki + Va2 + (ki + 1)2)
o T(kn + 1) . kn,un + ) 2 _ Tkn _ 2 2

- 2 ( kn + 1 ) 2(kn+1)( 2ypin + o+ Y°)

 T(ky+1) knpin + 3\ 2 Tk, 9

T ( T ka1 ) 72(kn+1)(y7“”))

so that a normal distribution can be identified in the variable p as follows
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so that the inner integral does not depend on y which means that it is just a normalising constant.
Focusing on the first integral, whose integrand is proportional to a gamma distribution, it follows that
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which is a generalised Student’s t distribution with 2«,, degrees of freedom, with location parameter p,,
and scale parameter (,(k, + 1)/(anky,). As a remark, whenever «,, > 1, the variance of y,1 given
Y1.n = (Y1,--.,yn) can be expressed as
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so that the predictive variance equals the sum of the posterior expectation of the sampling variance 7~}

and the posterior variance of the unknown mean p, indeed,
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the last line following from results in the lecture notes.



