
Exercise sheet 2

Solutions

Exercise 1. Assuming that the two directions of motion are independent, the state equations for the
different components of θk can be expressed as follows:

x
(i)
k = x

(i)
k−1 + ∆ẋ

(i)
k−1 + uk,i

ẋ
(i)
k = ẋ

(i)
k−1 + uk,i+2,

for any i ∈ {1, 2}, which can be expressed more concisely in a matrix form (following the same approach
for the noise) as θk = Fθk−1 + uk with uk ∼ N(· ; 0,U) and with

F =


1 ∆ 0 0
0 1 0 0
0 0 1 ∆
0 0 0 1

 and U =


∆4/4 ∆3/2 0 0
∆3/2 ∆2 0 0

0 0 ∆4/4 ∆3/2
0 0 ∆3/2 ∆2

 .

Similarly, assuming that the position is observed, the observation equation is yk = Hθk + vk with the
observation matrix H defined as

H =

(
1 0 0 0
0 0 1 0

)
and the noise can be assumed to be of the form vk ∼ N(· ; 0,σ2I2).

Exercise 2. 1. The state and observation equations are θk = θk−1 + uk and yk = θk + vk with
(uk)k and (vk)k i.i.d. sequences of random variables distributed according to N(· ; 0,U) and N(· ; 0,V )
respectively.

2. The prediction of the Kalman filter becomes mk = m̂k−1 and Pk = P̂k−1 + U , the innovation,
Kalman gain and covariance of the innovation become

zk = yk −mk, Kk =
Pk
Sk

, and Sk = Pk + V

so that the update step can be simplified to

m̂k = mk +Kkzk =
V

Pk + V
mk +

Pk
Pk + V

yk

P̂k = (1−Kk)Pk =
V Pk
Pk + V

This is indeed what was found in Section 1.3.1 in the case of an unknown mean and a known variance.

3. The predictive distribution of yk given y0:k−1 = y0:k−1 is normal (as a linear combination of
normally-distributed random variables) with mean mk and covariance Pk +V . The latter is the same as
the covariance of the innovation, which is not surprising since the (random) innovation zk is simply yk
shifted by a constant (−mk), so they have the same covariance matrix.

Exercise 3. 1. From the previous exercise, we easily compute that

P̂k =
V Pk
Pk + V

=
V P̂k−1 + V U

P̂k−1 + U + V

Kk =
Pk

Pk + V
=

P̂k−1 + U

P̂k−1 + U + V
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Since it holds that P̂k−1 = V Kk−1, it follows that

Kk =
V Kk−1 + U

VKk−1 + U + V
.

These equations can be expressed more concisely as

P̂−1
k = (P̂k−1 + U)−1 + V −1

K−1
k =

(
Kk−1 +

U

V

)−1

+ 1

2. Denoting R the ratio U/V , it holds that

Kk −Kk−1 = KkKk−1(K−1
k−1 −K

−1
k )

= KkKk−1

(
(Kk−2 +R)−1 − (Kk−1 +R)−1

)
=
KkKk−1(Kk−1 −Kk−2)

(Kk−1 +R)(Kk−2 +R)

so that

Kk −Kk−1

Kk−1 −Kk−2
=

KkKk−1

(Kk−1 +R)(Kk−2 +R)

= KkKk−1(K−1
k − 1)(K−1

k−1 − 1)

= (1−Kk)(1−Kk−1) ∈ (0, 1)

since Kk ∈ (0, 1) for any k ≥ 0. The lower bound implies that the sequence is monotonic and the upper
bound implies that the increment becomes smaller with k, so that the sequence as a unique limit K.

Exercise 4. The distribution of θk+1 given y0:k−1 = y0:k−1 is also normal with mean

E(θk+1 |y0:k−1 = y0:k−1) = E(θk |y0:k−1 = y0:k−1) = m̂k−1

and variance

var(θk+1 |y0:k−1 = y0:k−1) = var(θk |y0:k−1 = y0:k−1) + U = P̂k−1 + 2U

In these conditions, the Kalman gain at time step k + 1 without update at time k becomes

K̃k+1 =
P̂k−1 + 2U

P̂k−1 + 2U + V
,

This alternative Kalman gain is greater than what would have been Kk if yk had been available, so
that the influence of yk+1 will be greater. This is to be expected since there is more uncertainty when
observations are missing.

Exercise 5. To answer this question, it is convenient to rewrite the state θk as

θk+i = θk +

i∑
j=1

uk+j

for any i > 0, so that

yk+i = θk+i + vk+i = θk + vk+i +

i∑
j=1

uk+j
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The aggregate future sales Ak,δ can then be expressed as

Ak,δ =

δ∑
i=1

yk+i

=

δ∑
i=1

(
θk + vk+i +

i∑
j=1

uk+j

)

= δθk +

δ∑
i=1

vk+i +

δ∑
i=1

i∑
j=1

uk+j

= δθk +

δ∑
i=1

vk+i +

δ∑
i=1

(δ − i+ 1)uk+i.

Since Ak,δ is defined as a linear combination of normally-distributed random variables, it also follows a
normal distribution with mean

E(Ak,δ |y0:k = y0:k) = δE(θk |y0:k = y0:k) = δm̂k

and variance

var(Ak,δ |y0:k = y0:k) = δ2 var(θk |y0:k = y0:k) +
δ∑
i=1

var(vk+i) +

δ∑
i=1

(δ − i+ 1)2 var(uk+i)

= δ2P̂k + δV + U

δ∑
i=1

i2

= δ2P̂k + δV +
1

6
δ(δ + 1)(2δ + 1)U .
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