Exercise sheet 2
Solutions

Exercise 1. Assuming that the two directions of motion are independent, the state equations for the
different components of 8, can be expressed as follows:

m,(j) = :c,(ﬁl + A:i:,(jll + ug;

) _ ()

(1) _
T =X Up g2,

for any ¢ € {1,2}, which can be expressed more concisely in a matrix form (following the same approach
for the noise) as Oy = FO,_1 + up with ug ~ N(-;0,U) and with

1 A0 0 A'/4 A32 0 0
o1 0 0 a2 a2 0 o
F=1o 0 1 a and U=1"g" o Atj A3
00 0 1 0 0 A2 A2

Similarly, assuming that the position is observed, the observation equation is yr = H@y + vi with the
observation matrix H defined as
I — 10 0 0
“\0 0 1 0

and the noise can be assumed to be of the form vy ~ N(-;0,02l5).

Exercise 2. 1. The state and observation equations are 8, = 0;_1 + uy and yr = 0 + vy with
(ug)r and (vg)g i.d. sequences of random variables distributed according to N(-;0,U) and N(-;0,V)
respectively.

2. The prediction of the Kalman filter becomes my = myr_1 and P, = Pk_l + U, the innovation,
Kalman gain and covariance of the innovation become

Zk = Yk — Mk, Kk:%, and Sp,=P.+V
so that the update step can be simplified to
mg =my + Kz, = Pk‘—/&— Tk + P;f?i v Yk
Po=(1-KyP, = P}:f’“v

This is indeed what was found in Section 1.3.1 in the case of an unknown mean and a known variance.

3. The predictive distribution of yx given yo.x—1 = ¥Yo.k—1 is normal (as a linear combination of
normally-distributed random variables) with mean mj and covariance P + V. The latter is the same as
the covariance of the innovation, which is not surprising since the (random) innovation zj is simply yy
shifted by a constant (—my), so they have the same covariance matrix.

Exercise 3. 1. From the previous exercise, we easily compute that

P VP, VP]C71 +VU
: P, +V Pk—1 +U+V
Py P +U

7Pk+V7Pkf1+U+V

K,




Since it holds that P,_; = V Kj_1, it follows that

VKp_1+U

K = .
FTVEe AUV

These equations can be expressed more concisely as

Pl= (P +U) V!

U 1
K= (Kia+ ) +1

2. Denoting R the ratio U/V, it holds that

Ky — Ky = Kp K 1 (K — K
= K K1 (Kp—2 + R) ™' — (K1 + R) ™)
_ KKy 1 (Kg1 — Ky 2)
(Ki—1+ R)(Kr—2+ R)

so that
Kp—Kp Ky Ky

K. 1 —Ki_o (Kk71+R)(Kk72+R)
= Kp K1 (K = (KL — 1)
= (1 — Kk)(l — K}cfl) c (O, 1)

since K, € (0,1) for any k > 0. The lower bound implies that the sequence is monotonic and the upper
bound implies that the increment becomes smaller with k, so that the sequence as a unique limit K.

Exercise 4. The distribution of 81 given yg.x—1 = Yo.x—1 is also normal with mean
E(Or+1|Yok—1 = Yok—1) = E(Ok [ Yo:k—1 = Yok—1) = 1k—1
and variance
var(O11 | Yo:r—1 = Your—1) = var(O | You—1 = Youk—1) + U = Pp_y +2U
In these conditions, the Kalman gain at time step k£ + 1 without update at time k becomes

~ pk:—l +2U
Kk+1 =,
P, 1 +2U+V

This alternative Kalman gain is greater than what would have been Kj if y, had been available, so
that the influence of yi41 will be greater. This is to be expected since there is more uncertainty when
observations are missing.

Exercise 5. To answer this question, it is convenient to rewrite the state 6; as
i
O =01+ Z Uk j
j=1
for any ¢ > 0, so that

3
Yiri = Okri + Vi = O + vpys + E Ukt j
=1



The aggregate future sales A s can then be expressed as

s i
= Z (0k + Vgi + Z uk+j)
i=1 j=1
5 5
=60 + ka+i + Z Z Uk j
i—1

i=1 j=1

é é
=00 + Z’Uk+i + Z((S — i+ Dt

i=1 i=1

Since Ay s is defined as a linear combination of normally-distributed random variables, it also follows a
normal distribution with mean

E(Aks | Yok = Yo:k) = OE(Ok | Yo:x = Yo:k) = Oy,

and variance

6 0
var(Aps | Yok = youx) = 62 var(Ok | Yo = youx) + Y var(vys) + (6 — i + 1) var(upy)
i=1 i=1
R 6
=P+ 0V U i?
i=1

. 1
=82P, + 6V + 65(5 +1)(26 + DU.



