
Exercise sheet 3

Solutions

Exercise 1. The state and observation equations of the DLM with states (θ′k)k≥0 and observations
(yk)k≥0 can be expressed as

S−1k θ′k = FkS
−1
k−1θ

′
k−1 + uk

yk = HkS
−1
k θ′k + vk

with uk ∼ N(· ; 0,Uk) so that

θ′k = SkFkS
−1
k−1θ

′
k−1 + u′k

yk = HkS
−1
k θ′k + vk,

with u′k ∼ N(· ; 0,SkUkS
ᵀ
k ). It also holds that

E(θ′k |y0:k = y0:k) = SkE(θk |y0:k = y0:k) = Skm̂k

var(θ′k |y0:k = y0:k) = Sk var(θk |y0:k = y0:k)Sᵀ
k = SkP̂kS

ᵀ
k .

Exercise 2. Before looking at the specific models, we can express yk+δ in a convenient form by first
looking at θk+δ and finding that

θk+δ = Fθk+δ−1 + uk+δ

= F (Fθk+δ−2 + uk+δ−1) + uk+δ

= F δθk +

δ−1∑
i=0

F iuk+δ−i

so that

yk+δ = Hθk+δ + vk+δ = HF δθk +

δ−1∑
i=0

HF iuk+δ−i + vk+δ.

The distribution of yk+δ given y0:k = y0:k is therefore normal as soon as the distribution of θk+δ given
y0:k = y0:k is also normal (as a linear combination of normally distributed random variables). The result
can now be used for both cases:

1. A second-order polynomial trend model has transition and observation matrix

F =

(
1 1
0 1

)
and H = e2 =

(
1 0

)
so that

HF δ =
(
1 0

)(1 δ
0 1

)
=
(
1 δ

)
for any δ ≥ 0. Denoting θk =

(
xk, ẋk

)ᵀ
, we deduce that

yk+δ = xk + δẋk +

δ−1∑
i=0

(
εk+δ−i,1 + (1 + i)εk+δ−i,2

)
+ vk+δ.
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The mean and variance of yk+δ given y0:k = y0:k can then be found as

E(yk+δ |y0:k = y0:k) = m̂k,1 + δm̂k,2

var(yk+δ |y0:k = y0:k) =
(
1 δ

)
P̂k
(
1 δ

)ᵀ
+ δσ2

1 +

δ−1∑
i=0

(1 + i)2σ2
2 + Vk+δ

= P̂k,(1,1) + 2δP̂k,(1,2) + δ2P̂k,(2,2) + δσ2
1 +

δ(δ + 1)(2δ + 1)

6
σ2
2 + Vk+δ

2. The superposition of a first-order polynomial trend model with a first-harmonic Fourier-form sea-
sonal model has for transition and observation matrix

F =

1 0 0
0 cos(ω) sin(ω)
0 − sin(ω) cos(ω)

 and H =
(
1 1 0

)
.

Given that F is a block-diagonal matrix with the second block being a rotation matrix, it holds
that

F δ =

1 0 0
0 cos(δω) sin(δω)
0 − sin(δω) cos(δω)

 ,

so that
HF δ =

(
1 cos(δω) sin(δω)

) .
= A.

For similar reasons, it holds that F ᵀ = F−1 and it follows from the form of U that FUF ᵀ = U .
Therefore, the mean and variance of yk+δ given y0:k = y0:k can then be deduced to be

E(yk+δ |y0:k = y0:k) = m̂k,1 + cos(δω)m̂k,2 + sin(δω)m̂k,3

var(yk+δ |y0:k = y0:k) = AP̂kA
ᵀ +

δ−1∑
i=0

HF iU(F i)ᵀHᵀ + Vk+δ

= AP̂kA
ᵀ + δ(σ2 + σ′2) + Vk+δ

Exercise 3. 1. This result can be verified easily by induction. It is obviously true for δ = 1 so
assuming it holds for a given δ, we want to prove it also holds for δ + 1:

F δ+1 = F δF =


λa1 a1 + λa2 . . . ad−1 + λad
0 λa1 . . . ad−1 + λad−1
...

. . .
. . .

...
0 . . . 0 λa1

 .

Considering the j + 1-th term on the first line, j > 0, we have

aj + λaj+1 =

(
δ

j − 1

)
λδ−j+1 + λ

(
δ

j

)
λδ−j

=

((
δ

j − 1

)
+

(
δ

j

))
λ(δ+1)−j

=

(
δ + 1

j

)
λ(δ+1)−j

where the last line is due to Pascal’s rule. This is the correct term for δ + 1 which completes the
proof by induction.

2. When d = 3, the forecast function g0 is of the form

g0(δ) = λδm0,1 + δλδ−1m0,2 +
δ(δ − 1)

2
λδ−2m0,3

= λδ
(
m0,1 + δ

(m0,2

λ
− m0,3

2λ2

)
+ δ2

m0,3

2λ2

)
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Since we assume that g0(δ) = Aδ2 exp(−ρδ), we can identify the following relations:

λ = exp(−ρ), A =
m0,3

2λ2
, m0,1 = 0 and

m0,2

λ
=
m0,3

2λ2

with the third and last equality following from the fact that the constant terms and the terms
in λ must be equal to 0 (since there are no such terms in the assumed expression of g0). To use
the information regarding when the maximum is attained, we consider the derivative of log g0 as
follows

d

dδ
log g0(δ) =

2

δ
− ρ = 0 =⇒ δ =

2

ρ
= 4 and ρ = 1/2,

from which it also follows that λ = exp(−1/2). We also know that the maximum value is 30, 000
so that

g0(4) = 42A exp(−2) = 30, 000 =⇒ A = 1875 exp(2) ≈ 13, 854.

The values of m0,2 and m0,3 can also be found to be

m0,3 = 2λ2A ≈ 10, 194

m0,2 =
m0,3

2λ
≈ 8, 403.

Since λ equals to exp(−1/2) ∈ (−1, 1), it is true that the sales will be modelled as tapering off.
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