Exercise sheet 6

Solutions
Exercise 1. i) If the target distribution 7(-) has an unknown normalising constant, that is 7(-) is of
the form o)
~y
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with Z unknown, then one can instead consider the self-normalised importance sampling algorithm
which gives an estimator of I(p) of the form
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with @(0) = ~(6)/s(0)

ii) An unbiased estimator Z for Z is
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This estimator is indeed unbiased since
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iii) The obtained estimator of I(¢p) is not unbiased because
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In general, estimators define as the quotient of two estimators are often biased.
Exercise 2. i) Z, is a high-dimensional integral in general and is difficult to compute directly with

quadrature or basic Monte Carlo methods.

ii) Given that it is possible to sample from pg(-) and gx(-|6) for any 6 € ©, the simplest proposal
distribution that one can consider is

n
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iii) To sample from s,(+) one can fist sample @y from po(-), then for all k € {1,...,n}, sample 8y, from
@ (- | Ok—1).

iv) Because of the special form of the proposal distribution, it holds that
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v) The importance sampling algorithm for this choice of proposal distribution is given in Algorithm 1.



Algorithm 1 Sequential importance sampling for the proposal (1)

1: for i = L,...,Ndo
2: Sample 0(()1) ~ po(+)
3: Define the importance weight

end for
for k=1,...,ndo
fori=1,...,N do _
Sample 0, 6", ~ i(-16;” )
Define the importance weight
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9: end for
10: end for
11: Output:
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12: and Z,, = % Zf\;l ws)




